pytorch实现逻辑回归

本文实例为大家分享了pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下

一、pytorch实现逻辑回归

逻辑回归是非常经典的分类算法,是用于分类任务,如垃圾分类任务,情感分类任务等都可以使用逻辑回归。

接下来使用逻辑回归模型完成一个二分类任务:

# 使用逻辑回归完成一个二分类任务
# 数据准备
import torch
import matplotlib.pyplot as plt

x1 = torch.randn(365)+1.5   # randn():输出一个形状为size的标准正态分布Tensor
x2 = torch.randn(365)-1.5
#print(x1.shape)  # torch.Size([365])
#print(x2.shape)  # torch.Size([365])
data = zip(x1.data.numpy(),x2.data.numpy())  # 创建一个聚合了来自每个可迭代对象中的元素的迭代器。 x = [1,2,3]

pos = []
neg = []
def classification(data):
    for i in data:
        if (i[0] > 1.5+0.1*torch.rand(1).item()*(-1)**torch.randint(1,10,(1,1)).item()):
            pos.append(i)
        else:
            neg.append(i)

classification(data)
# 将正、负两类数据可视化
pos_x = [i[0] for i in pos]
pos_y = [i[1] for i in pos]
neg_x = [i[0] for i in neg]
neg_y = [i[1] for i in neg]
plt.scatter(pos_x,pos_y,c = 'r',marker = "*")
plt.scatter(neg_x,neg_y,c = 'b',marker = "^")
plt.show()

# 构造正、负两类数据可视化结果如上图所示

# 构建模型
import torch.nn as nn
class LogisticRegression(nn.Module):
    def __init__(self):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(2,1)
        self.sigmoid = nn.Sigmoid()

    def forward(self,x):
        return self.sigmoid(self.linear(x))

model = LogisticRegression()
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(),0.01)
epoch = 5000
features = [[i[0],i[1]] for i in pos]
features.extend([[i[0],i[1]] for i in neg])   #extend 接受一个参数,这个参数总是一个 list,并且把这个 list 中的每个元素添加到原 list 中
features = torch.Tensor(features)   # torch.Tensor 生成单精度浮点类型的张量

label = [1 for i in range(len(pos))]
label.extend(0 for i in range(len(neg)))
label = torch.Tensor(label)
print(label.shape)

for i in range(500000):
    out = model(features)
    #print(out.shape)
    loss = criterion(out.squeeze(1),label)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    # 分类任务准确率
    acc = (out.ge(0.5).float().squeeze(1)==label).sum().float()/features.size()[0]
    if (i % 10000 ==0):
        plt.scatter(pos_x, pos_y, c='r', marker="*")
        plt.scatter(neg_x, neg_y, c='b', marker="^")
        weight = model.linear.weight[0]
        #print(weight.shape)
        wo = weight[0]
        w1 = weight[1]
        b = model.linear.bias.data[0]
        # 绘制分界线
        test_x = torch.linspace(-10,10,500)   # 500个点
        test_y = (-wo*test_x - b) / w1
        plt.plot(test_x.data.numpy(),test_y.data.numpy(),c="pink")
        plt.title("acc:{:.4f},loss:{:.4f}".format(acc,loss))
        plt.ylim(-5,3)
        plt.xlim(-3,5)
        plt.show()

附上分类结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • PyTorch线性回归和逻辑回归实战示例

    线性回归实战 使用PyTorch定义线性回归模型一般分以下几步: 1.设计网络架构 2.构建损失函数(loss)和优化器(optimizer) 3.训练(包括前馈(forward).反向传播(backward).更新模型参数(update)) #author:yuquanle #data:2018.2.5 #Study of LinearRegression use PyTorch import torch from torch.autograd import Variable # train

  • pytorch实现逻辑回归

    本文实例为大家分享了pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下 一.pytorch实现逻辑回归 逻辑回归是非常经典的分类算法,是用于分类任务,如垃圾分类任务,情感分类任务等都可以使用逻辑回归. 接下来使用逻辑回归模型完成一个二分类任务: # 使用逻辑回归完成一个二分类任务 # 数据准备 import torch import matplotlib.pyplot as plt x1 = torch.randn(365)+1.5 # randn():输出一个形状为size的标准正

  • Pytorch实现逻辑回归分类

    本文实例为大家分享了Pytorch实现逻辑回归分类的具体代码,供大家参考,具体内容如下 1.代码实现 步骤: 1.获得数据2.建立逻辑回归模型3.定义损失函数4.计算损失函数5.求解梯度6.梯度更新7.预测测试集 import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch.autograd import Variable import torchvision.da

  • 基于Pytorch实现逻辑回归

    本文实例为大家分享了Pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下 1.逻辑回归 线性回归表面上看是“回归问题”,实际上处理的问题是“分类”问题,逻辑回归模型是一种广义的回归模型,其与线性回归模型有很多的相似之处,模型的形式也基本相同,唯一不同的地方在于逻辑回归会对y作用一个逻辑函数,将其转化为一种概率的结果.逻辑函数也称为Sigmoid函数,是逻辑回归的核心. 2.基于Pytorch实现逻辑回归 import torch as t import matplotlib.pyplo

  • PyTorch实现多维度特征输入逻辑回归

    目录 一.实现过程 1.准备数据 2.设计模型 4.训练过程 5.结果展示 二.参考文献 一.实现过程 1.准备数据 本文数据采取文献[1]给出的数据集,该数据集前8列为特征,最后1列为标签(0/1).本模型使用pandas处理该数据集,需要注意的是,原始数据集没有特征名称,需要自己在第一行添加上去,否则,pandas会把第一行的数据当成特征名称处理,从而影响最后的分类效果. 代码如下: # 1.准备数据 import torch import pandas as pd import numpy

  • pytorch使用nn.Moudle实现逻辑回归

    本文实例为大家分享了pytorch使用nn.Moudle实现逻辑回归的具体代码,供大家参考,具体内容如下 内容 pytorch使用nn.Moudle实现逻辑回归 问题 loss下降不明显 解决方法 #源代码 out的数据接收方式      if torch.cuda.is_available():          x_data=Variable(x).cuda()          y_data=Variable(y).cuda()      else:          x_data=Var

  • python编写Logistic逻辑回归

    用一条直线对数据进行拟合的过程称为回归.逻辑回归分类的思想是:根据现有数据对分类边界线建立回归公式. 公式表示为: 一.梯度上升法 每次迭代所有的数据都参与计算. for 循环次数:         训练 代码如下: import numpy as np import matplotlib.pyplot as plt def loadData(): labelVec = [] dataMat = [] with open('testSet.txt') as f: for line in f.re

  • python机器学习理论与实战(四)逻辑回归

    从这节算是开始进入"正规"的机器学习了吧,之所以"正规"因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证.这整套的流程是机器学习必经环节.今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning).逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计

  • 详解用TensorFlow实现逻辑回归算法

    本文将实现逻辑回归算法,预测低出生体重的概率. # Logistic Regression # 逻辑回归 #---------------------------------- # # This function shows how to use TensorFlow to # solve logistic regression. # y = sigmoid(Ax + b) # # We will use the low birth weight data, specifically: # y

  • Python实现的逻辑回归算法示例【附测试csv文件下载】

    本文实例讲述了Python实现的逻辑回归算法.分享给大家供大家参考,具体如下: 使用python实现逻辑回归 Using Python to Implement Logistic Regression Algorithm 菜鸟写的逻辑回归,记录一下学习过程 代码: #encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/10 Project: Using Python to Implement Logisti

随机推荐