keras多显卡训练方式

使用keras进行训练,默认使用单显卡,即使设置了os.environ['CUDA_VISIBLE_DEVICES']为两张显卡,也只是占满了显存,再设置tf.GPUOptions(allow_growth=True)之后可以清楚看到,只占用了第一张显卡,第二张显卡完全没用。

要使用多张显卡,需要按如下步骤:

(1)import multi_gpu_model函数:from keras.utils import multi_gpu_model

(2)在定义好model之后,使用multi_gpu_model设置模型由几张显卡训练,如下:

model=Model(...) #定义模型结构
model_parallel=multi_gpu_model(model,gpu=n) #使用几张显卡n等于几
model_parallel.compile(...) #注意是model_parallel,不是model

通过以上代码,model将作为CPU上的原始模型,而model_parallel将作为拷贝模型被复制到各个GPU上进行梯度计算。如果batchsize为128,显卡n=2,则每张显卡单独计算128/2=64张图像,然后在CPU上将两张显卡计算得到的梯度进行融合更新,并对模型权重进行更新后再将新模型拷贝到GPU再次训练。

(3)从上面可以看出,进行训练时,仍然在model_parallel上进行:

model_parallel.fit(...) #注意是model_parallel

(4)保存模型时,model_parallel保存了训练时显卡数量的信息,所以如果直接保存model_parallel的话,只能将模型设置为相同数量的显卡调用,否则训练的模型将不能调用。因此,为了之后的调用方便,只保存CPU上的模型,即model:

model.save(...) #注意是model,不是model_parallel

如果用到了callback函数,则默认保存的也是model_parallel(因为训练函数是针对model_parallel的),所以要用回调函数保存model的话需要自己对回调函数进行定义:

class OwnCheckpoint(keras.callbacks.Callback):
 def __init__(self,model):
  self.model_to_save=model
 def on_epoch_end(self,epoch,logs=None): #这里logs必须写
  self.model_to_save.save('model_advanced/model_%d.h5' % epoch)

定以后具体使用如下:

checkpoint=OwnCheckpoint(model)
model_parallel.fit_generator(...,callbacks=[checkpoint])

这样就没问题了!

补充知识:keras.fit_generator及多卡训练记录

1.环境问题

使用keras,以tensorflow为背景,tensorflow1.14多卡训练会出错 python3.6

2.代码

2.1

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '4,5'

2.2 自定义generator函数

def img_image_generator(path_img, path_lab, batch_size, data_list):
 while True:
 # 'train_list.csv'
 file_list = pd.read_csv(data_list, sep=',',usecols=[1]).values.tolist()
 file_list = [i[0] for i in file_list]
 cnt = 0
 X = []
 Y1 = []
 for file_i in file_list:
 x = cv2.imread(path_img+'/'+file_i, cv2.IMREAD_GRAYSCALE)
 x = x.astype('float32')
 x /= 255.
 y = cv2.imread(path_lab+'/'+file_i, cv2.IMREAD_GRAYSCALE)
 y = y.astype('float32')
 y /= 255.
 X.append(x.reshape(256, 256, 1))
 Y1.append(y.reshape(256, 256, 1))
 cnt += 1
 if cnt == batch_size:
 cnt = 0
 yield (np.array(X), [np.array(Y1), np.array(Y1)])
 X = []
 Y1 = []

2.3 函数调用及训练

 generator_train = img_image_generator(path1, path2, 4, pathcsv_train)
 generator_test= img_image_generator(path1, path2, 4, pathcsv_test)
 model.fit_generator(generator_train, steps_per_epoch=237*2, epochs=50, callbacks=callbacks_list, validation_data=generator_test, validation_steps=60*2)

3. 多卡训练

3.1 复制model

model_parallel = multi_gpu_model(model, gpus=2)

3.2 checkpoint 定义

class ParallelModelCheckpoint(ModelCheckpoint):
  def __init__(self, model, filepath, monitor='val_out_final_score', verbose=0,\
   save_best_only=False, save_weights_only=False, mode='auto', period=1):
   self.single_model = model
   super(ParallelModelCheckpoint, self).__init__(filepath, monitor, verbose, save_best_only, save_weights_only, mode, period)

  def set_model(self, model):
   super(ParallelModelCheckpoint, self).set_model(self.single_model)

使用

model_checkpoint = ParallelModelCheckpoint(model=model, filepath=filepath, monitor='val_loss',verbose=1, save_best_only=True, mode='min')

3.3 注意的问题

保存模型是时候需要使用以原来的模型保存,不能使用model_parallel保存

以上这篇keras多显卡训练方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Keras框架中的epoch、bacth、batch size、iteration使用介绍

    1.epoch Keras官方文档中给出的解释是:"简单说,epochs指的就是训练过程接中数据将被"轮"多少次" (1)释义: 训练过程中当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个epoch,网络会在每个epoch结束时报告关于模型学习进度的调试信息. (2)为什么要训练多个epoch,即数据要被"轮"多次 在神经网络中传递完整的数据集一次是不够的,对于有限的数据集(是在批梯度下降情况下),使用一个迭代过程,更新权重一

  • keras 使用Lambda 快速新建层 添加多个参数操作

    keras许多简单操作,都需要新建一个层,使用Lambda可以很好完成需求. # 额外参数 def normal_reshape(x, shape): return K.reshape(x,shape) output = Lambda(normal_reshape, arguments={'shape':(-1, image_seq, 1000)})(output) output = Lambda(lambda inp: K.mean(inp, axis=1), output_shape=(10

  • Tensorflow中k.gradients()和tf.stop_gradient()用法说明

    上周在实验室开荒某个代码,看到中间这么一段,对Tensorflow中的stop_gradient()还不熟悉,特此周末进行重新并总结. y = xx + K.stop_gradient(rounded - xx) 这代码最终调用位置在tensoflow.python.ops.gen_array_ops.stop_gradient(input, name=None),关于这段代码为什么这样写的意义在文末给出. [stop_gradient()意义] 用stop_gradient生成损失函数w.r.

  • Keras—embedding嵌入层的用法详解

    最近在工作中进行了NLP的内容,使用的还是Keras中embedding的词嵌入来做的. Keras中embedding层做一下介绍. 中文文档地址:https://keras.io/zh/layers/embeddings/ 参数如下: 其中参数重点有input_dim,output_dim,非必选参数input_length. 初始化方法参数设置后面会单独总结一下. demo使用预训练(使用百度百科(word2vec)的语料库)参考 embedding使用的demo参考: def creat

  • keras多显卡训练方式

    使用keras进行训练,默认使用单显卡,即使设置了os.environ['CUDA_VISIBLE_DEVICES']为两张显卡,也只是占满了显存,再设置tf.GPUOptions(allow_growth=True)之后可以清楚看到,只占用了第一张显卡,第二张显卡完全没用. 要使用多张显卡,需要按如下步骤: (1)import multi_gpu_model函数:from keras.utils import multi_gpu_model (2)在定义好model之后,使用multi_gpu

  • Keras 在fit_generator训练方式中加入图像random_crop操作

    使用Keras作前端写网络时,由于训练图像尺寸较大,需要做类似 tf.random_crop 图像裁剪操作. 为此研究了一番Keras下已封装的API. Data Augmentation(数据扩充) Data Aumentation 指使用下面或其他方法增加输入数据量.我们默认图像数据. 旋转&反射变换(Rotation/reflection): 随机旋转图像一定角度; 改变图像内容的朝向; 翻转变换(flip): 沿着水平或者垂直方向翻转图像; 缩放变换(zoom): 按照一定的比例放大或者

  • keras之权重初始化方式

    在神经网络训练中,好的权重 初始化会加速训练过程. 下面说一下kernel_initializer 权重初始化的方法. 不同的层可能使用不同的关键字来传递初始化方法,一般来说指定初始化方法的关键字是kernel_initializer 和 bias_initializer model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01))) # also works; will use the defau

  • keras 两种训练模型方式详解fit和fit_generator(节省内存)

    第一种,fit import keras from keras.models import Sequential from keras.layers import Dense import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_s

  • Pytorch根据layers的name冻结训练方式

    使用model.named_parameters()可以轻松搞定, model.cuda() # ######################################## Froze some layers to fine-turn the model ######################## for name, param in model.named_parameters(): # 带有参数名的模型的各个层包含的参数遍历 if 'out' or 'merge' or 'bef

  • 利用keras加载训练好的.H5文件,并实现预测图片

    我就废话不多说了,直接上代码吧! import matplotlib matplotlib.use('Agg') import os from keras.models import load_model import numpy as np from PIL import Image import cv2 #加载模型h5文件 model = load_model("C:\\python\\python3_projects\\cat_dog\\cats_dogs_fifty_thousand.h

  • keras中模型训练class_weight,sample_weight区别说明

    keras 中fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None) 官方文档

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • python神经网络使用Keras构建RNN训练

    目录 Keras中构建RNN的重要函数 1.SimpleRNN 2.model.train_on_batch Keras中构建RNN的重要函数 1.SimpleRNN SimpleRNN用于在Keras中构建普通的简单RNN层,在使用前需要import. from keras.layers import SimpleRNN 在实际使用时,需要用到几个参数. model.add( SimpleRNN( batch_input_shape = (BATCH_SIZE,TIME_STEPS,INPUT

  • 基于keras中训练数据的几种方式对比(fit和fit_generator)

    一.train_on_batch model.train_on_batch(batchX, batchY) train_on_batch函数接受单批数据,执行反向传播,然后更新模型参数,该批数据的大小可以是任意的,即,它不需要提供明确的批量大小,属于精细化控制训练模型,大部分情况下我们不需要这么精细,99%情况下使用fit_generator训练方式即可,下面会介绍. 二.fit model.fit(x_train, y_train, batch_size=32, epochs=10) fit的

随机推荐