使用keras实现孪生网络中的权值共享教程

首先声明,这里的权值共享指的不是CNN原理中的共享权值,而是如何在构建类似于Siamese Network这样的多分支网络,且分支结构相同时,如何使用keras使分支的权重共享。

Functional API

为达到上述的目的,建议使用keras中的Functional API,当然Sequential 类型的模型也可以使用,本篇博客将主要以Functional API为例讲述。

keras的多分支权值共享功能实现,官方文档介绍

上面是官方的链接,本篇博客也是基于上述官方文档,实现的此功能。(插一句,keras虽然有中文文档,但中文文档已停更,且中文文档某些函数介绍不全,建议直接看英文官方文档)

不共享参数的模型

MatchNet网络结构为例子,为方便显示,将卷积模块个数减为2个。首先是展示不共享参数的模型,以便观看完整的网络结构。

整体的网络结构如下所示:

代码包含两部分,第一部分定义了两个函数,FeatureNetwork()生成特征提取网络,ClassiFilerNet()生成决策网络或称度量网络。网络结构的可视化在博客末尾。在ClassiFilerNet()函数中,可以看到调用了两次FeatureNetwork()函数,keras.models.Model也被使用的两次,因此生成的input1和input2是两个完全独立的模型分支,参数是不共享的。

from keras.models import Sequential
from keras.layers import merge, Conv2D, MaxPool2D, Activation, Dense, concatenate, Flatten
from keras.layers import Input
from keras.models import Model
from keras.utils import np_utils
import tensorflow as tf
import keras
from keras.datasets import mnist
import numpy as np
from keras.utils import np_utils
from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.utils.vis_utils import plot_model

# ---------------------函数功能区-------------------------
def FeatureNetwork():
  """生成特征提取网络"""
  """这是根据,MNIST数据调整的网络结构,下面注释掉的部分是,原始的Matchnet网络中feature network结构"""
  inp = Input(shape = (28, 28, 1), name='FeatureNet_ImageInput')
  models = Conv2D(filters=24, kernel_size=(3, 3), strides=1, padding='same')(inp)
  models = Activation('relu')(models)
  models = MaxPool2D(pool_size=(3, 3))(models)

  models = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(models)
  # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
  models = Activation('relu')(models)

  models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
  models = Activation('relu')(models)

  models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
  models = Activation('relu')(models)
  models = Flatten()(models)
  models = Dense(512)(models)
  models = Activation('relu')(models)
  model = Model(inputs=inp, outputs=models)
  return model

def ClassiFilerNet(): # add classifier Net
  """生成度量网络和决策网络,其实maychnet是两个网络结构,一个是特征提取层(孪生),一个度量层+匹配层(统称为决策层)"""
  input1 = FeatureNetwork()           # 孪生网络中的一个特征提取
  input2 = FeatureNetwork()           # 孪生网络中的另一个特征提取
  for layer in input2.layers:          # 这个for循环一定要加,否则网络重名会出错。
    layer.name = layer.name + str("_2")
  inp1 = input1.input
  inp2 = input2.input
  merge_layers = concatenate([input1.output, input2.output])    # 进行融合,使用的是默认的sum,即简单的相加
  fc1 = Dense(1024, activation='relu')(merge_layers)
  fc2 = Dense(1024, activation='relu')(fc1)
  fc3 = Dense(2, activation='softmax')(fc2)

  class_models = Model(inputs=[inp1, inp2], outputs=[fc3])
  return class_models

# ---------------------主调区-------------------------
matchnet = ClassiFilerNet()
matchnet.summary() # 打印网络结构
plot_model(matchnet, to_file='G:/csdn攻略/picture/model.png') # 网络结构输出成png图片

共享参数的模型

FeatureNetwork()的功能和上面的功能相同,为方便选择,在ClassiFilerNet()函数中加入了判断是否使用共享参数模型功能,令reuse=True,便使用的是共享参数的模型。

关键地方就在,只使用的一次Model,也就是说只创建了一次模型,虽然输入了两个输入,但其实使用的是同一个模型,因此权重共享的。

from keras.models import Sequential
from keras.layers import merge, Conv2D, MaxPool2D, Activation, Dense, concatenate, Flatten
from keras.layers import Input
from keras.models import Model
from keras.utils import np_utils
import tensorflow as tf
import keras
from keras.datasets import mnist
import numpy as np
from keras.utils import np_utils
from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.utils.vis_utils import plot_model

# ----------------函数功能区-----------------------
def FeatureNetwork():
  """生成特征提取网络"""
  """这是根据,MNIST数据调整的网络结构,下面注释掉的部分是,原始的Matchnet网络中feature network结构"""
  inp = Input(shape = (28, 28, 1), name='FeatureNet_ImageInput')
  models = Conv2D(filters=24, kernel_size=(3, 3), strides=1, padding='same')(inp)
  models = Activation('relu')(models)
  models = MaxPool2D(pool_size=(3, 3))(models)

  models = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(models)
  # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
  models = Activation('relu')(models)

  models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
  models = Activation('relu')(models)

  models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
  models = Activation('relu')(models)

  # models = Conv2D(64, kernel_size=(3, 3), strides=2, padding='valid')(models)
  # models = Activation('relu')(models)
  # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
  models = Flatten()(models)
  models = Dense(512)(models)
  models = Activation('relu')(models)
  model = Model(inputs=inp, outputs=models)
  return model

def ClassiFilerNet(reuse=False): # add classifier Net
  """生成度量网络和决策网络,其实maychnet是两个网络结构,一个是特征提取层(孪生),一个度量层+匹配层(统称为决策层)"""

  if reuse:
    inp = Input(shape=(28, 28, 1), name='FeatureNet_ImageInput')
    models = Conv2D(filters=24, kernel_size=(3, 3), strides=1, padding='same')(inp)
    models = Activation('relu')(models)
    models = MaxPool2D(pool_size=(3, 3))(models)

    models = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(models)
    # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
    models = Activation('relu')(models)

    models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
    models = Activation('relu')(models)

    models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
    models = Activation('relu')(models)

    # models = Conv2D(64, kernel_size=(3, 3), strides=2, padding='valid')(models)
    # models = Activation('relu')(models)
    # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
    models = Flatten()(models)
    models = Dense(512)(models)
    models = Activation('relu')(models)
    model = Model(inputs=inp, outputs=models)

    inp1 = Input(shape=(28, 28, 1)) # 创建输入
    inp2 = Input(shape=(28, 28, 1)) # 创建输入2
    model_1 = model(inp1) # 孪生网络中的一个特征提取分支
    model_2 = model(inp2) # 孪生网络中的另一个特征提取分支
    merge_layers = concatenate([model_1, model_2]) # 进行融合,使用的是默认的sum,即简单的相加

  else:
    input1 = FeatureNetwork()           # 孪生网络中的一个特征提取
    input2 = FeatureNetwork()           # 孪生网络中的另一个特征提取
    for layer in input2.layers:          # 这个for循环一定要加,否则网络重名会出错。
      layer.name = layer.name + str("_2")
    inp1 = input1.input
    inp2 = input2.input
    merge_layers = concatenate([input1.output, input2.output])    # 进行融合,使用的是默认的sum,即简单的相加
  fc1 = Dense(1024, activation='relu')(merge_layers)
  fc2 = Dense(1024, activation='relu')(fc1)
  fc3 = Dense(2, activation='softmax')(fc2)

  class_models = Model(inputs=[inp1, inp2], outputs=[fc3])
  return class_models

如何看是否真的是权值共享呢?直接对比特征提取部分的网络参数个数!

不共享参数模型的参数数量:

共享参数模型的参数总量

共享参数模型中的特征提取部分的参数量为:

由于截图限制,不共享参数模型的特征提取网络参数数量不再展示。其实经过计算,特征提取网络部分的参数数量,不共享参数模型是共享参数的两倍。两个网络总参数量的差值就是,共享模型中,特征提取部分的参数的量

网络结构可视化

不共享权重的网络结构

共享参数的网络结构,其中model_1代表的就是特征提取部分。

以上这篇使用keras实现孪生网络中的权值共享教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 关于keras中keras.layers.merge的用法说明

    旧版本中: from keras.layers import merge merge6 = merge([layer1,layer2], mode = 'concat', concat_axis = 3) 新版本中: from keras.layers.merge import concatenate merge = concatenate([layer1, layer2], axis=3) 补充知识:keras输入数据的方法:model.fit和model.fit_generator 1.第一

  • 完美解决keras保存好的model不能成功加载问题

    前两天调用之前用keras(tensorflow做后端)训练好model,却意外发现报错了!!之前从来没有过报错!!错误内容粘贴如下: File "h5py_objects.pyx", line 54, in h5py._objects.with_phil.wrapper (C:\Minonda\conda-bld\h5py_1496885653697\work\h5py_objects.c:2867) File "h5py_objects.pyx", line 5

  • keras 权重保存和权重载入方式

    如果需要全部权重载入,直接使用权重载入方式 model.save_weights('./weigths.h5') model2.load_weights('./weigths.h5') 但是有时候你只需要载入部分权重 所以你可以这样操作 首先,为所有层命名,在层中直接加入方法 name='layer1' 第二,使用,将你不需要载入权重的值更改名字. 最后,载入权重. x=BatchNormalization(axis=channel_axis,name='layer2')(x) model2.l

  • 使用Keras预训练模型ResNet50进行图像分类方式

    Keras提供了一些用ImageNet训练过的模型:Xception,VGG16,VGG19,ResNet50,InceptionV3.在使用这些模型的时候,有一个参数include_top表示是否包含模型顶部的全连接层,如果包含,则可以将图像分为ImageNet中的1000类,如果不包含,则可以利用这些参数来做一些定制的事情. 在运行时自动下载有可能会失败,需要去网站中手动下载,放在"~/.keras/models/"中,使用WinPython则在"settings/.ke

  • 使用keras实现孪生网络中的权值共享教程

    首先声明,这里的权值共享指的不是CNN原理中的共享权值,而是如何在构建类似于Siamese Network这样的多分支网络,且分支结构相同时,如何使用keras使分支的权重共享. Functional API 为达到上述的目的,建议使用keras中的Functional API,当然Sequential 类型的模型也可以使用,本篇博客将主要以Functional API为例讲述. keras的多分支权值共享功能实现,官方文档介绍 上面是官方的链接,本篇博客也是基于上述官方文档,实现的此功能.(插

  • Keras搭建孪生神经网络Siamese network比较图片相似性

    目录 什么是孪生神经网络 孪生神经网络的实现思路 一.预测部分 1.主干网络介绍 2.比较网络 二.训练部分 1.数据集的格式 2.Loss计算 训练自己的孪生神经网络 1.训练本文所使用的Omniglot例子 2.训练自己相似性比较的模型 什么是孪生神经网络 最近学习了一下如何比较两张图片的相似性,用到了孪生神经网络,一起来学习一下. 简单来说,孪生神经网络(Siamese network)就是“连体的神经网络”,神经网络的“连体”是通过共享权值来实现的,如下图所示. 所谓权值共享就是当神经网

  • pytorch权值初始化weight initilzation

    目录 pytorch中的权值初始化 pytorch中的权值初始化 官方论坛对weight-initilzation的讨论 torch.nn.Module.apply(fn) torch.nn.Module.apply(fn) # 递归的调用weights_init函数,遍历nn.Module的submodule作为参数 # 常用来对模型的参数进行初始化 # fn是对参数进行初始化的函数的句柄,fn以nn.Module或者自己定义的nn.Module的子类作为参数 # fn (Module ->

  • keras实现基于孪生网络的图片相似度计算方式

    我就废话不多说了,大家还是直接看代码吧! import keras from keras.layers import Input,Dense,Conv2D from keras.layers import MaxPooling2D,Flatten,Convolution2D from keras.models import Model import os import numpy as np from PIL import Image from keras.optimizers import S

  • keras的siamese(孪生网络)实现案例

    代码位于keras的官方样例,并做了微量修改和大量学习?. 最终效果: import keras import numpy as np import matplotlib.pyplot as plt import random from keras.callbacks import TensorBoard from keras.datasets import mnist from keras.models import Model from keras.layers import Input,

  • 对Tensorflow中权值和feature map的可视化详解

    前言 Tensorflow中可以使用tensorboard这个强大的工具对计算图.loss.网络参数等进行可视化.本文并不涉及对tensorboard使用的介绍,而是旨在说明如何通过代码对网络权值和feature map做更灵活的处理.显示和存储.本文的相关代码主要参考了github上的一个小项目,但是对其进行了改进. 原项目地址为(https://github.com/grishasergei/conviz). 本文将从以下两个方面进行介绍: 卷积知识补充 网络权值和feature map的可

  • 解决Keras TensorFlow 混编中 trainable=False设置无效问题

    这是最近碰到一个问题,先描述下问题: 首先我有一个训练好的模型(例如vgg16),我要对这个模型进行一些改变,例如添加一层全连接层,用于种种原因,我只能用TensorFlow来进行模型优化,tf的优化器,默认情况下对所有tf.trainable_variables()进行权值更新,问题就出在这,明明将vgg16的模型设置为trainable=False,但是tf的优化器仍然对vgg16做权值更新 以上就是问题描述,经过谷歌百度等等,终于找到了解决办法,下面我们一点一点的来复原整个问题. trai

  • keras 实现轻量级网络ShuffleNet教程

    ShuffleNet是由旷世发表的一个计算效率极高的CNN架构,它是专门为计算能力非常有限的移动设备(例如,10-150 MFLOPs)而设计的.该结构利用组卷积和信道混洗两种新的运算方法,在保证计算精度的同时,大大降低了计算成本.ImageNet分类和MS COCO对象检测实验表明,在40 MFLOPs的计算预算下,ShuffleNet的性能优于其他结构,例如,在ImageNet分类任务上,ShuffleNet的top-1 error 7.8%比最近的MobileNet低.在基于arm的移动设

  • python神经网络Keras构建CNN网络训练

    目录 Keras中构建CNN的重要函数 1.Conv2D 2.MaxPooling2D 3.Flatten 全部代码 利用Keras构建完普通BP神经网络后,还要会构建CNN Keras中构建CNN的重要函数 1.Conv2D Conv2D用于在CNN中构建卷积层,在使用它之前需要在库函数处import它. from keras.layers import Conv2D 在实际使用时,需要用到几个参数. Conv2D( nb_filter = 32, nb_row = 5, nb_col = 5

  • 六十、Windows NT4.0网络中漫游用户配置文件的建立

    六十.Windows NT4.0网络中漫游用户配置文件的建立  目前,关于如何在NT中建立漫游用户配置文件的书籍不少,但大多理论多.实例少,即使有几个例子,也不连贯.针对这种情况,笔者通过一个具体的实例来阐述建立漫游用户配置文件的详细过程.本例的网络为NT网络,网络中只有一个域,主域控制器的计算机名为"HP",操作系统为Windows NT Server 4.0:域中有一台工作站名为"LX",操作系统为Windows NT Workstation 4.0,现在想为&

随机推荐