Keras 实现加载预训练模型并冻结网络的层

在解决一个任务时,我会选择加载预训练模型并逐步fine-tune。比如,分类任务中,优异的深度学习网络有很多。

ResNet, VGG, Xception等等... 并且这些模型参数已经在imagenet数据集中训练的很好了,可以直接拿过来用。

根据自己的任务,训练一下最后的分类层即可得到比较好的结果。此时,就需要“冻结”预训练模型的所有层,即这些层的权重永不会更新。

以Xception为例:

加载预训练模型:

from tensorflow.python.keras.applications import Xception
model = Sequential()
model.add(Xception(include_top=False, pooling='avg', weights='imagenet'))
model.add(Dense(NUM_CLASS, activation='softmax'))

include_top = False : 不包含顶层的3个全链接网络

weights : 加载预训练权重

随后,根据自己的分类任务加一层网络即可。

网络具体参数:

model.summary

得到两个网络层,第一层是xception层,第二层为分类层。

由于未冻结任何层,trainable params为:20, 811, 050

冻结网络层:

由于第一层为xception,不想更新xception层的参数,可以加以下代码:

model.layers[0].trainable = False

冻结预训练模型中的层

如果想冻结xception中的部分层,可以如下操作:

from tensorflow.python.keras.applications import Xception
model = Sequential()
model.add(Xception(include_top=False, pooling='avg', weights='imagenet'))
model.add(Dense(NUM_CLASS, activation='softmax'))
for i, layer in enumerate(model.layers[0].layers):
 if i > 115:
 layer.trainable = True
 else:
 layer.trainable = False
 print(i, layer.name, layer.trainable)

加载所有预训练模型的层

若想把xeption的所有层应用在训练自己的数据,并改变分类数。可以如下操作:

model = Sequential()
model.add(Xception(include_top=True, weights=None, classes=NUM_CLASS))

* 如果想指定classes,有两个条件:include_top:True, weights:None。否则无法指定classes

补充知识:如何利用预训练模型进行模型微调(如冻结某些层,不同层设置不同学习率等)

由于预训练模型权重和我们要训练的数据集存在一定的差异,且需要训练的数据集有大有小,所以进行模型微调、设置不同学习率就变得比较重要,下面主要分四种情况进行讨论,错误之处或者不足之处还请大佬们指正。

(1)待训练数据集较小,与预训练模型数据集相似度较高时。例如待训练数据集中数据存在于预训练模型中时,不需要重新训练模型,只需要修改最后一层输出层即可。

(2)待训练数据集较小,与预训练模型数据集相似度较小时。可以冻结模型的前k层,重新模型的后n-k层。冻结模型的前k层,用于弥补数据集较小的问题。

(3)待训练数据集较大,与预训练模型数据集相似度较大时。采用预训练模型会非常有效,保持模型结构不变和初始权重不变,对模型重新训练

(4)待训练数据集较大,与预训练模型数据集相似度较小时。采用预训练模型不会有太大的效果,可以使用预训练模型或者不使用预训练模型,然后进行重新训练。

以上这篇Keras 实现加载预训练模型并冻结网络的层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • 浅谈cv2.imread()和keras.preprocessing中的image.load_img()区别

    1.image.load_img() from keras.preprocessing import image img_keras = image.load_img('./original/dog/880.jpg') print(img_keras) img_keras = image.img_to_array(img_keras) print(img_keras[:,1,1]) 效果如下: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB s

  • 升级keras解决load_weights()中的未定义skip_mismatch关键字问题

    1.问题描述 在用yolov3训练自己的数据集时,尝试加载预训练的权重,在冻结前154层的基础上,利用自己的数据集finetune. 出现如下错误: load_weights(),got an unexpected keyword argument skip_mismatch 2.解决方法 因为keras旧版本没有这一定义,在新的版本中有这一关键字的定义,因此,更新keras版本至2.1.5即可解决. source activate env pip uninstall keras pip ins

  • keras 读取多标签图像数据方式

    我所接触的多标签数据,主要包括两类: 1.一张图片属于多个标签,比如,data:一件蓝色的上衣图片.jpg,label:蓝色,上衣.其中label包括两类标签,label1第一类:上衣,裤子,外套.label2第二类,蓝色,黑色,红色.这样两个输出label1,label2都是是分类,我们可以直接把label1和label2整合为一个label,直接编码,比如[蓝色,上衣]编码为[011011].这样模型的输出也只需要一个输出.实现了多分类. 2.一张图片属于多个标签,但是几个标签不全是分类.比

  • 解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

    错误描述: 1.保存模型:model.save_weights('./model.h5') 2.脚本重启 3.加载模型:model.load_weights('./model.h5') 4.模型报错:ValueError: You are trying to load a weight file containing 12 layers into a model with 0 layers. 问题分析: 模型创建后还没有编译,一般是在模型加载前调用model.build(input_shape)

  • Keras 实现加载预训练模型并冻结网络的层

    在解决一个任务时,我会选择加载预训练模型并逐步fine-tune.比如,分类任务中,优异的深度学习网络有很多. ResNet, VGG, Xception等等... 并且这些模型参数已经在imagenet数据集中训练的很好了,可以直接拿过来用. 根据自己的任务,训练一下最后的分类层即可得到比较好的结果.此时,就需要"冻结"预训练模型的所有层,即这些层的权重永不会更新. 以Xception为例: 加载预训练模型: from tensorflow.python.keras.applicat

  • Tensorflow加载预训练模型和保存模型的实例

    使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in

  • PyTorch加载预训练模型实例(pretrained)

    使用预训练模型的代码如下: # 加载预训练模型 resNet50 = models.resnet50(pretrained=True) ResNet50 = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=2) # 读取参数 pretrained_dict = resNet50.state_dict() model_dict = ResNet50.state_dict() # 将pretained_dict里不属于model_dict的键剔除掉 pret

  • pytorch加载预训练模型与自己模型不匹配的解决方案

    pytorch中如果自己搭建网络并且加载别人的与训练模型的话,如果模型和参数不严格匹配,就可能会出问题,接下来记录一下我的解决方法. 两个有序字典找不同 模型的参数和pth文件的参数都是有序字典(OrderedDict),把字典中的键转为列表就可以在for循环里迭代找不同了. model = ResNet18(1) model_dict1 = torch.load('resnet18.pth') model_dict2 = model.state_dict() model_list1 = lis

  • keras 解决加载lstm+crf模型出错的问题

    错误展示 new_model = load_model("model.h5") 报错: 1.keras load_model valueError: Unknown Layer :CRF 2.keras load_model valueError: Unknown loss function:crf_loss 错误修改 1.load_model修改源码:custom_objects = None 改为 def load_model(filepath, custom_objects, c

  • pytorch载入预训练模型后,实现训练指定层

    1.有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练: pretrained_params = torch.load('Pretrained_Model') model = The_New_Model(xxx) model.load_state_dict(pretrained_params.state_dict(), strict=False) strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃. 2.

  • Pytorch加载部分预训练模型的参数实例

    前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了.对于深度学习的初学者,Pytorch值得推荐.今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程. 直接加载预选脸模型 如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直

  • 使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

    本文介绍了如何在pytorch下搭建AlexNet,使用了两种方法,一种是直接加载预训练模型,并根据自己的需要微调(将最后一层全连接层输出由1000改为10),另一种是手动搭建. 构建模型类的时候需要继承自torch.nn.Module类,要自己重写__ \_\___init__ \_\___方法和正向传递时的forward方法,这里我自己的理解是,搭建网络写在__ \_\___init__ \_\___中,每次正向传递需要计算的部分写在forward中,例如把矩阵压平之类的. 加载预训练ale

  • 自己搭建resnet18网络并加载torchvision自带权重的操作

    直接搭建网络必须与torchvision自带的网络的权重也就是pth文件的结构.尺寸和变量命名完全一致,否则无法加载权重文件. 此时可比较2个字典逐一加载,详见 pytorch加载预训练模型与自己模型不匹配的解决方案 import torch import torchvision import cv2 as cv from utils.utils import letter_box from model.backbone import ResNet18 model1 = ResNet18(1)

  • pytorch 预训练模型读取修改相关参数的填坑问题

    pytorch 预训练模型读取修改相关参数的填坑 修改部分层,仍然调用之前的模型参数. resnet = resnet50(pretrained=False) resnet.load_state_dict(torch.load(args.predir)) res_conv31 = Bottleneck_dilated(1024, 256,dilated_rate = 2) print("---------------------",res_conv31) print("---

随机推荐