简单的python协同过滤程序实例代码

本文研究的主要是python协同过滤程序的相关内容,具体介绍如下。

关于协同过滤的一个最经典的例子就是看电影,有时候不知道哪一部电影是我们喜欢的或者评分比较高的,那么通常的做法就是问问周围的朋友,看看最近有什么好的电影推荐。在问的时候,都习惯于问跟自己口味差不多的朋友,这就是协同过滤的核心思想。

这个程序完全是为了应付大数据分析与计算的课程作业所写的一个小程序,先上程序,一共55行。不在意细节的话,55行的程序已经表现出了协同过滤的特性了。就是对每一个用户找4个最接近的用户,然后进行推荐,在选择推荐的时候是直接做的在4个用户中选择该用户item没包括的,当然这里没限制推荐数量,个人觉得如果要提高推荐准确率的画,起码,1,要对流行的item进行处理。2,将相邻的四个用户的item进行排序,从多到少的进行推荐。程序所用的数据是movielens上的(http://grouplens.org/datasets/movielens)。相似度的计算也很简单,直接用了交集和差集的比值。好吧,上程序

#coding utf-8
import os
import sys
import re

f1=open("/home/alber/data_base/bigdata/movielens_train_result.txt",'r')  #读取train文件,已经处理成每一行代表一位用户的item,项之间用空格。
f2=open("/home/alber/data_base/bigdata/movielens_train_result3.txt",'a')
txt=f1.readlines()
contxt=[]
f1.close()
userdic={}
for line in txt:
  line_clean=" ".join(line.split())
  position=line_clean.index(",")
  ID=line_clean[0:position]
  item=line_clean[position+1:]
  userdic.setdefault(ID,item)
  if len(item)>=5:           #对观影量少于5的用户不计入相似性计算的范围
    contxt.append(item)
for key in userdic.keys():        #计算每位用户的4个最相似用户
  ID_num=key
  value=userdic[key]
   user_item=value.split(' ')
   Sim_user=[]
   for lines in contxt:
     lines_clean=lines.split(' ')
     intersection=list(set(lines_clean).intersection(set(user_item)))
     lenth_intersection=len(intersection)
     difference=list(set(lines_clean).difference(set(user_item)))
     lenth_difference=len(difference)
     if lenth_difference!=0:
       Similarity=float(lenth_intersection)/lenth_difference          #交集除以差集作为相似性的判断条件
       Sim_user.append(Similarity)
     else:
       Sim_user.append("0")
   Sim_user_copy=Sim_user[:]
   Sim_user_copy.sort()
   Sim_best=Sim_user_copy[-4:]
   position1=Sim_user.index(Sim_best[3])
   position2=Sim_user.index(Sim_best[2])
   position3=Sim_user.index(Sim_best[1])
   position4=Sim_user.index(Sim_best[0])
   if position1!=0 and position2!=0 and position3!=0 and position4!=0:
     recommender=userdic[str(position1)]+" "+userdic[str(position2)]+" "+userdic[str(position3)]+" "+userdic[str(position4)] #将4位用户的看过的电影作为推荐
  else:
    recommender="none"
  reco_list=recommender.split(' ')
  recomm=[]
  for good in reco_list:
    if good not in user_item:
      recomm.append(good)
    else:
      pass
  f2.write((" ".join(recomm)+"\n"))
f2.close()

总结

以上就是本文关于简单的python协同过滤程序实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

您可能感兴趣的文章:

  • python实现协同过滤推荐算法完整代码示例
  • 用Python实现协同过滤的教程
(0)

相关推荐

  • python实现协同过滤推荐算法完整代码示例

    测试数据 http://grouplens.org/datasets/movielens/ 协同过滤推荐算法主要分为: 1.基于用户.根据相邻用户,预测当前用户没有偏好的未涉及物品,计算得到一个排序的物品列表进行推荐 2.基于物品.如喜欢物品A的用户都喜欢物品C,那么可以知道物品A与物品C的相似度很高,而用户C喜欢物品A,那么可以推断出用户C也可能喜欢物品C. 不同的数据.不同的程序猿写出的协同过滤推荐算法不同,但其核心是一致的: 1.收集用户的偏好 1)不同行为分组 2)不同分组进行加权计算用

  • 用Python实现协同过滤的教程

    协同过滤 在 用户 -- 物品(user - item)的数据关系下很容易收集到一些偏好信息(preference),比如评分.利用这些分散的偏好信息,基于其背后可能存在的关联性,来为用户推荐物品的方法,便是协同过滤,或称协作型过滤(collaborative filtering). 这种过滤算法的有效性基础在于: 用户的偏好具有相似性,即用户是可分类的.这种分类的特征越明显,推荐的准确率就越高     物品之间是存在关系的,即偏好某一物品的任何人,都很可能也同时偏好另一件物品 不同环境下这两种

  • 简单的python协同过滤程序实例代码

    本文研究的主要是python协同过滤程序的相关内容,具体介绍如下. 关于协同过滤的一个最经典的例子就是看电影,有时候不知道哪一部电影是我们喜欢的或者评分比较高的,那么通常的做法就是问问周围的朋友,看看最近有什么好的电影推荐.在问的时候,都习惯于问跟自己口味差不多的朋友,这就是协同过滤的核心思想. 这个程序完全是为了应付大数据分析与计算的课程作业所写的一个小程序,先上程序,一共55行.不在意细节的话,55行的程序已经表现出了协同过滤的特性了.就是对每一个用户找4个最接近的用户,然后进行推荐,在选择

  • python+tkinter编写电脑桌面放大镜程序实例代码

    本文讲述的是通过python+tkinter编写一个简单桌面放大镜的代码示例,具体如下. 代码思路:首先全屏截图,然后在鼠标当前位置以小窗口进行二次截图,放大后再显示到鼠标左上角. 主要技术:全屏截图,指定区域截图,绑定鼠标事件,绘制图像. 建议大家照着代码敲一遍,然后运行试试.代码有一点点小瑕疵,试着发现并尝试解决. 总结 以上就是本文关于Python+tkinter编写电脑桌面放大镜程序实例代码的全部内容,希望对大家有所帮助.感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指

  • 基于Python socket的端口扫描程序实例代码

    本文研究的主要是Python的端口扫描程序,具体实例代码如下. 先来看看第一个端口扫描程序代码,获取本机的IP和端口号: import socket def get_my_ip(): try: csock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) csock.connect(('8.8.8.8', 80)) (addr, port) = csock.getsockname() csock.close() return addr,port

  • Python爬虫框架Scrapy实例代码

    目标任务:爬取腾讯社招信息,需要爬取的内容为:职位名称,职位的详情链接,职位类别,招聘人数,工作地点,发布时间. 一.创建Scrapy项目 scrapy startproject Tencent 命令执行后,会创建一个Tencent文件夹,结构如下 二.编写item文件,根据需要爬取的内容定义爬取字段 # -*- coding: utf-8 -*- import scrapy class TencentItem(scrapy.Item): # 职位名 positionname = scrapy.

  • Python实现搜索算法的实例代码

    将数据存储在不同的数据结构中时,搜索是非常基本的必需条件.最简单的方法是遍历数据结构中的每个元素,并将其与您正在搜索的值进行匹配.这就是所谓的线性搜索.它效率低下,很少使用,但为它创建一个程序给出了我们如何实现一些高级搜索算法的想法. 线性搜索 在这种类型的搜索中,逐个搜索所有值.每个值都会被检查,如果找到匹配项,那么返回该特定值,否则搜索将继续到数据结构的末尾.代码如下: [Python] 纯文本查看 def linear_search(data, search_for): ""&q

  • AJAX实现简单的注册页面异步请求实例代码

    AJAX简介 (1)AJAX = 异步 JavaScript 和 XML. (2)AJAX 是一种用于创建快速动态网页的技术. (3)通过在后台与服务器进行少量数据交换,AJAX 可以使网页实现异步更新.这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行更新. (4)传统的网页(不使用 AJAX)如果需要更新内容,必需重载整个网页面.  简单布局 JS先判断,把前端可以的判断做,减少服务器的交互 $('button').on('click',function(){; var boolu

  • 一个简单的php MVC留言本实例代码(必看篇)

    摘要 标题上我把这个留言板叫最简单的,其实应该叫最简陋的,因为把全部注意力集中在MVC模式设计和实现上,所以UI方面几乎没有一点修饰. 这个小程序一共包含6个文件,其中index.php是程序入口.post.htm是留言表单.在lib文件夹里Model.View .Controller三个文件分别实现MVC,DataAccess是一个简单的数据库访问类.其实这个程序是国外的一个人写的. PHP代码: /** * 一个用来访问MySQL的类 * 仅仅实现演示所需的基本功能,没有容错等 * 代码未作

  • Java编程实现基于用户的协同过滤推荐算法代码示例

    协同过滤简单来说是利用某兴趣相投.拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要. 协同过滤又可分为评比(rating)或者群体过滤(social filtering)协同过滤以其出色的速度和健壮性,在全球互联网领域炙手可热 UserCF的核心思想即为根据用户数据模拟向量相似度,我们根据这个相似度,来找出指定用户的相似用户,然后将相似用

  • python+matplotlib演示电偶极子实例代码

    使用matplotlib.tri.CubicTriInterpolator.演示变化率计算: 完整实例: from matplotlib.tri import ( Triangulation, UniformTriRefiner, CubicTriInterpolator) import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np #---------------------------------

  • Python编程求质数实例代码

    本文研究的主要是Python编程求质数实例,选取了几个数进行了测试,具体如下. 定义:质数又称素数.一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数:否则称为合数. 我们知道自然数(除了0和1以外)都可以写成几个质数相乘再乘以一的格式,所以我们可以用以个数去试一试看看它能否将小于它的质数整除. 首先我们创建一个空的list,然后我们知道2是最小的质数,于是我们把2添加进这个空白的list,之后我们开始循环,第一个数从3开始,用3除以小于3的质数,没有小于它的质数能被它整除,

随机推荐