详解python中的 is 操作符

大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解。原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗?

其实,高票答案已经说得很详细了。我只是再补充一点而已。

is 操作符是Python语言的一个内建的操作符。它的作用在于比较两个变量是否指向了同一个对象。

与 == 的区别

class A():
 def __init__(self, v):
  self.value = v
 def __eq__(self, t):
  return self.value == t.value
a = A(3)
b = A(3)
print a == b
print a is b

这个结果是True,False。因为我们重写了__eq__方法就使得a, b在比较的时候,只比较它们的value即可。只要它们的value相等,那么a, b就是相等的。

而 is 操作符是判断两个变量是否引用了同一个对象。

同一个对象?

is 的用法说起来其实挺简单的,但是真正用起来,它的难点恰恰就在于判断哪些对象是同一个对象。

看下面的几个测试,先不看结果,自己能答对多少?

a = 10
b = 10
print a is b
a = 10.0
b = 10.0
print a is b
a = 10
def f():
 return 10
print f() is a
a = 1000
def f():
 return 1000
print f() is a
a = 10.0
def f():
 return 10.0
print f() is a

嗯。这个结果是True, True, True, False, False。你答对了吗?

这个结果中牵扯到两个问题:第一,就是小整数的缓存,第二,就是pyc文件中CodeObject的组织问题。

Python中把-127到128这些小整数都缓存了一份。这和Java的Integer类是一样的。所以,对于-127到128之间的整数,整个Python虚拟机中就只有一个实例。不管你什么时候,什么场景下去使用 is 进行判断,都会是True,所以我们知道了这两个测试一定会是True:

a = 10
b = 10
print a is b
a = 10
def f():
 return 10
print f() is a

接着,我们重点看下,这两个测试:

a = 10.0
b = 10.0
print a is b
a = 10.0
def f():
 return 10.0
print f() is a

为什么一个是True,一个是False。要探究这个问题,就要从字节码的角度去分析了。我们先把这个文件编译一下:

python -m compileall testis.py

然后再使用这个工具查看一下字节码文件:

https:// github.com/hinus/railgu n/blob/master/src/main/python/rgparser/show.py

得到这样的输出:

 <argcount> 0 </argcount>
 <nlocals> 0</nlocals>
 <stacksize> 2</stacksize>
 <flags> 0040</flags>
 <code>
  6400005a00006400005a01006500006501006b080047486400005a000064
  01008400005a02006502008300006500006b0800474864020053
 </code>
 <dis>
 1   0 LOAD_CONST    0 (10.0)
    3 STORE_NAME    0 (a)

 2   6 LOAD_CONST    0 (10.0)
    9 STORE_NAME    1 (b)

 3   12 LOAD_NAME    0 (a)
    15 LOAD_NAME    1 (b)
    18 COMPARE_OP    8 (is)
    21 PRINT_ITEM
    22 PRINT_NEWLINE  

 5   23 LOAD_CONST    0 (10.0)
    26 STORE_NAME    0 (a)

 6   29 LOAD_CONST    1 (<code object f>)
    32 MAKE_FUNCTION   0
    35 STORE_NAME    2 (f)

 8   38 LOAD_NAME    2 (f)
    41 CALL_FUNCTION   0
    44 LOAD_NAME    0 (a)
    47 COMPARE_OP    8 (is)
    50 PRINT_ITEM
    51 PRINT_NEWLINE
    52 LOAD_CONST    2 (None)
    55 RETURN_VALUE
 </dis>
 <names> ('a', 'b', 'f')</names>
 <varnames> ()</varnames>
 <freevars> ()</freevars>
 <cellvars> ()</cellvars>
 <filename> 'testis.py'</filename>
 <name> '<module>'</name>
 <firstlineno> 1</firstlineno>
 <consts>
  10.0
  <code>
   <argcount> 0 </argcount>
   <nlocals> 0</nlocals>
   <stacksize> 1</stacksize>
   <flags> 0043</flags>
   <code> 64010053</code>
   <dis>
 7   0 LOAD_CONST    1 (10.0)
    3 RETURN_VALUE
   </dis>
   <names> ()</names>
   <varnames> ()</varnames>
   <freevars> ()</freevars>
   <cellvars> ()</cellvars>
   <filename> 'testis.py'</filename>
   <name> 'f'</name>
   <firstlineno> 6</firstlineno>
   <consts>
   None
   10.0
   </consts>
   <lnotab> 0001</lnotab>
  </code>
  None
 </consts>
 <lnotab> 060106010b0206010902</lnotab>

大家注意看,整个python文件其实就是一个大的<code>对象,f 所对应的那个函数也是一个<code>对象,这个code对象做为整体是大的<code>对象的consts域里的一个const项。再注意,在大<code>对象里,有10.0这样的一个const项,f 这个<code>对象所对应的conts里呢,也有一个10.0这个浮点数。

当python在加载这个文件的时候,就会完成主<code>里的10.0这个浮点数的加载,生成一个PyFloatObject。也就是说静态的pyc文件的常量表在被加载以后,就变成了内存中的常量表,文件的表里的10.0就变成了内存中的一个PyFloatObject。所以,a, b两个变量都会引用这个PyFloatObject。

但是 f 里的那个10.0呢?它是要等到MAKE_FUNCTION被调用的时候才会真正地初始化。做为 f 方法的返回值,它必然与我们之前所说的主<code>里的10.0不是同一个对象了。

本质上讲,这是Python的一个设计缺陷(例如Java以一个文件为编译单元,共享同一个常量池就会减轻这个问题。但如果跨文件使用 == 操作符,也会出现同样的问题。仍然没有解决这个问题。实际上,我自己也不知道该怎么解决这个问题。)我们应该尽量避免 is 的这种用法。始终把 is 的用法限制在本文的第一个例子中。这样相对会安全一些。

您可能感兴趣的文章:

  • python获取list下标及其值的简单方法
  • Python中list初始化方法示例
  • python代码 if not x: 和 if x is not None: 和 if not x is None:使用介绍
  • Python中运算符"=="和"is"的详解
  • Python中str is not callable问题详解及解决办法
  • Python json 错误xx is not JSON serializable解决办法
  • python list排序的两种方法及实例讲解
  • python分割列表(list)的方法示例
  • Python实现两个list对应元素相减操作示例
(0)

相关推荐

  • python分割列表(list)的方法示例

    前言 在日常开发中,有些API接口会限制请求的元素个数,这时就需要把一个大列表分割为固定的小列表,再进行相关处理,本文搜集了几个简单的方法,分享出来供大家参考学习,下面来看看详细的介绍: 方法示例 #1.分割大列表为三个元素的小列表,不够三个元素的亦当成一个列表输出 In [17]: lst Out[17]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] In [18]: for i in range(0,len(lst),3): ...: print lst[i:i+3] ..

  • python代码 if not x: 和 if x is not None: 和 if not x is None:使用介绍

    代码中经常会有变量是否为None的判断,有三种主要的写法: 第一种是`if x is None`: 第二种是 `if not x:`: 第三种是`if not x is None`(这句这样理解更清晰`if not (x is None)`) . 如果你觉得这样写没啥区别,那么你可就要小心了,这里面有一个坑.先来看一下代码: >>> x = 1 >>> not x False >>> x = [1] >>> not x False &

  • Python中list初始化方法示例

    本文实例讲述了Python中list初始化方法.分享给大家供大家参考,具体如下: 1.基本方法. lst = [1, 2, 3, 4, 5] 2.初始化连续数字. >>> lst = [n for n in range(5, 10)] >>> print(lst) [5, 6, 7, 8, 9] 3.初始化n个相同值.(两种方式) >>> lst = ['x' for n in range(5)] >>> print(lst) ['x

  • Python实现两个list对应元素相减操作示例

    本文实例讲述了Python实现两个list对应元素相减操作.分享给大家供大家参考,具体如下: 两个list的对应元素操作,这里以相减为例: # coding=gbk v1 = [21, 34, 45] v2 = [55, 25, 77] #v = v2 - v1 # Error: TypeError: unsupported operand type(s) for -: 'list' and 'list' v = list(map(lambda x: x[0]-x[1], zip(v2, v1)

  • python list排序的两种方法及实例讲解

    对List进行排序,Python提供了两个方法 方法1.用List的内建函数list.sort进行排序 list.sort(func=None, key=None, reverse=False) Python实例: >>> list = [2,5,8,9,3] >>> list [2,5,8,9,3] >>> list.sort() >>> list [2, 3, 5, 8, 9] 方法2.用序列类型函数sorted(list)进行排

  • python获取list下标及其值的简单方法

    当在python中遍历一个序列时,我们通常采用如下的方法: for item in sequence: process(item) 如果要取到某个item的位置,可以这样写: for index in range(len(sequence)): process(sequence[index]) 另一个比较好的方式是使用python内建的enumerate函数: enumerate(sequence,start=0) 上述函数中,sequence是一个可迭代的对象,可以是列表,字典,文件对象等等.

  • Python中str is not callable问题详解及解决办法

    Python中str is not callable问题详解及解决办法 问题提出: 在Python的代码,在运行过程中,碰到了一个错误信息: python代码: def check_province_code(province, country): num = len(province) while num <3: province = ''.join([str(0),province]) num = num +1 return country + province 运行的错误信息: check

  • Python json 错误xx is not JSON serializable解决办法

    Python json 错误xx is not JSON serializable解决办法 在使用json的时候经常会遇到xxx  is not JSON serializable,也就是无法序列化某些对象.经常使用django的同学知道django里面有个自带的Encoder来序列化时间等常用的对象.其实我们可以自己定定义对特定类型的对象的序列化,下面看下怎么定义和使用的. #!/usr/bin/env python # -*- coding: utf-8 -*- #json_extentio

  • Python中运算符"=="和"is"的详解

    前言 在讲is和==这两种运算符区别之前,首先要知道Python中对象包含的三个基本要素,分别是:id(身份标识).python type()(数据类型)和value(值).is和==都是对对象进行比较判断作用的,但对对象比较判断的内容并不相同.下面来看看具体区别在哪. Python中比较两个对象是否相等,一共有两种方法,简单来说,它们的区别如下: is是比较两个引用是否指向了同一个对象(引用比较). ==是比较两个对象是否相等. >>> a = [1, 2, 3] >>&g

  • 详解python中的 is 操作符

    大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解.原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗? 其实,高票答案已经说得很详细了.我只是再补充一点而已. is 操作符是Python语言的一个内建的操作符.它的作用在于比较两个变量是否指向了同一个对象. 与 == 的区别 class A(): def __init__(self, v): self.value = v def __eq__(self, t): return

  • 详解python中executemany和序列的使用方法

    详解python中executemany和序列的使用方法 一 代码 import sqlite3 persons=[ ("Jim","Green"), ("Hu","jie") ] conn=sqlite3.connect(":memory:") conn.execute("CREATE TABLE person(firstname,lastname)") conn.executeman

  • 详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别

    详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别 os._exit() 和 sys.exit() os._exit() vs sys.exit() 概述 Python的程序有两中退出方式:os._exit(), sys.exit().本文介绍这两种方式的区别和选择. os._exit()会直接将python程序终止,之后的所有代码都不会继续执行. sys.exit()会引发一个异常:SystemExit,如果这个异常没有被捕获,那

  • 详解 Python中LEGB和闭包及装饰器

    详解 Python中LEGB和闭包及装饰器 LEGB L>E>G?B L:local函数内部作用域 E:enclosing函数内部与内嵌函数之间 G:global全局作用域 B:build-in内置作用域 python 闭包 1.Closure:内部函数中对enclosing作用域变量的引用 2.函数实质与属性 函数是一个对象 函数执行完成后内部变量回收 函数属性 函数返回值 passline = 60 def func(val): if val >= passline: print (

  • 详解python中的文件与目录操作

    详解python中的文件与目录操作 一 获得当前路径 1.代码1 >>>import os >>>print('Current directory is ',os.getcwd()) Current directory is D:\Python36 2.代码2 如果将上面的脚本写入到文件再运行 Current directory is E:\python\work 二 获得目录的内容 Python代码 >>> os.listdir (os.getcwd

  • 详解python中asyncio模块

    一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念.也通过这次整理更加深刻理解这个模块的使用 asyncio 是干什么的? 异步网络操作并发协程 python3.0时代,标准库里的异步网络模块:select(非常底层) python3.0时代,第三方异步网络库:Tornado python3.4时代,asyncio:支持TCP,子进程 现在的asyncio,有了很多的模块已经在支持:aiohttp,ai

  • 详解python中的线程

    Python中创建线程有两种方式:函数或者用类来创建线程对象. 函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程. 类:创建threading.Thread的子类来包装一个线程对象. 1.线程的创建 1.1 通过thread类直接创建 import threading import time def foo(n): time.sleep(n) print("foo func:",n) def bar(n): time.sleep(n) prin

  • 详解Python中pyautogui库的最全使用方法

    在使用Python做脚本的话,有两个库可以使用,一个为PyUserInput库,另一个为pyautogui库.就本人而言,我更喜欢使用pyautogui库,该库功能多,使用便利.下面给大家介绍一下pyautogui库的使用方法.在cmd命令框中输入pip3 install pyautogui即可安装该库! 常用操作 我们在pyautogui库中常常使用的方法,如下: import pyautogui pyautogui.PAUSE = 1 # 调用在执行动作后暂停的秒数,只能在执行一些pyaut

  • 详解Python中namedtuple的使用

    namedtuple是Python中存储数据类型,比较常见的数据类型还有有list和tuple数据类型.相比于list,tuple中的元素不可修改,在映射中可以当键使用. namedtuple: namedtuple类位于collections模块,有了namedtuple后通过属性访问数据能够让我们的代码更加的直观更好维护. namedtuple能够用来创建类似于元祖的数据类型,除了能够用索引来访问数据,能够迭代,还能够方便的通过属性名来访问数据. 接下来通过本文给大家分享python nam

  • 详解python中groupby函数通俗易懂

    一.groupby 能做什么? python中groupby函数主要的作用是进行数据的分组以及分组后地组内运算! 对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下: df[](指输出数据的结果属性名称).groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式--函数名称) 举例如下: print(df["评分"].groupby([df["地区"],df["类

随机推荐