python opencv捕获摄像头并显示内容的实现

1、捕获摄像头和实时显示

import cv2
import numpy as np
import pickle
import matplotlib.pyplot as plt

cap = cv2.VideoCapture(0)

while True:
  ret,frame = cap.read()
  # Our operations on the frame come here
  gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
  # Display the resulting frame
  cv2.imshow('frame',gray)
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break

# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()

2、从摄像头内抓拍图片

import cv2
import numpy as np
import pickle
import matplotlib.pyplot as plt

cap = cv2.VideoCapture(0)
index = 0
while True:
  ret,frame = cap.read()
  # Our operations on the frame come here
  gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
  # Display the resulting frame
  cv2.imshow('frame',gray)
  if cv2.waitKey(1) & 0xFF == ord('p'):
    cv2.imwrite("kk.jpg",frame)
    index = index + 1
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break

# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()

补充:python-----从本地摄像头和网络摄像头截取图片

import cv2

# 获取本地摄像头
# folder_path 截取图片的存储目录
def get_img_from_camera_local(folder_path):
  cap = cv2.VideoCapture(0)
  i = 1
  while True:
    ret, frame = cap.read()
    cv2.imshow("capture", frame)
    print str(i)
    cv2.imwrite(folder_path + str(i) + '.jpg', frame) # 存储为图像
    if cv2.waitKey(1) & 0xFF == ord('q'):
      break
    i += 1
  cap.release()
  cv2.destroyAllWindows()

# 获取网络摄像头,格式:rtsp://username:pwd@ip/
# folder_path 截取图片的存储目录
def get_img_from_camera_net(folder_path):
  cap = cv2.VideoCapture('rtsp://username:pwd@ip/')
  i = 1
  while True:
    ret, frame = cap.read()
    cv2.imshow("capture", frame)
    print str(i)
    cv2.imwrite(folder_path + str(i) + '.jpg', frame) # 存储为图像
    if cv2.waitKey(1) & 0xFF == ord('q'):
      break
    i += 1
  cap.release()
  cv2.destroyAllWindows()

# 测试
if __name__ == '__main__':
  folder_path = 'D:\\img_from_camera\\'
  get_img_from_camera_local(folder_path)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python opencv设置摄像头分辨率以及各个参数的方法

    1,为了获取视频,你应该创建一个 VideoCapture 对象.他的参数可以是设备的索引号,或者是一个视频文件.设备索引号就是在指定要使用的摄像头.一般的笔记本电脑都有内置摄像头.所以参数就是 0.你可以通过设置成 1 或者其他的来选择别的摄像头.之后,你就可以一帧一帧的捕获视频了.但是最后,别忘了停止捕获视频.使用 ls /dev/video*命令可以查看摄像头设备 2,cap.read() 返回一个布尔值(True/False).如果帧读取的是正确的,就是 True.所以最后你可以通过检查

  • python+openCV利用摄像头实现人员活动检测

    本文实例为大家分享了python+openCV利用摄像头实现人员活动检测的具体代码,供大家参考,具体内容如下 1.前言 最近在做个机器人比赛,其中一项要求是让机器人实现对是否有人员活动的检测,所以就先拿PC端写一下,准备移植到机器人的树莓派. 2.工具 工具还是简单的python+视觉模块openCV,代码量也比较少.很简单就可以实现 3.人员检测的原理   从图书馆借了一本<特征提取与图像处理(第二版)>,是Mark S.Nixon和Alberto S.Aguado写的,其中讲了跟多关于检测

  • Python基于opencv调用摄像头获取个人图片的实现方法

    接触图像领域的应该对于opencv都不会感到陌生,这个应该算是功能十分强劲的一个算法库了,当然了,使用起来也是很方便的,之前使用Windows7的时候出现多该库难以安装成功的情况,现在这个问题就不存在了,需要安装包的话可以去我的资源中下载使用,使用pip安装方式十分地便捷. 今天主要是基于opencv模块来调用笔记本的内置摄像头,然后从视频流中获取到人脸的图像数据用于之后的人脸识别项目,也就是为了构建可用的数据集.整个实现过程并不复杂,具体如下: #!usr/bin/env python #en

  • python版opencv摄像头人脸实时检测方法

    OpenCV版本3.3.0,注意模型文件的路径要改成自己所安装的opencv的模型文件的路径,路径不对就会报错,一般在opencv-3.3.0/data/haarcascades 路径下 import numpy as np import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while True: ret,img = ca

  • Python OpenCV利用笔记本摄像头实现人脸检测

    本文实例为大家分享了Python OpenCV利用笔记本摄像头实现人脸检测的具体代码,供大家参考,具体内容如下 1.安装opencv 首先参考其他文章安装pip. 之后以管理员身份运行命令提示符,输入以下代码安装opencv pip install --user opencv-python 可以使用以下代码测试安装是否成功 #导入opencv模块 import cv2 #捕捉帧,笔记本摄像头设置为0即可 capture = cv2.VideoCapture(0) #循环显示帧 while(Tru

  • python+opencv实现摄像头调用的方法

    最近入了一块树莓派,想让其实现摄像头的调用,因此写下此博客备忘 一.树莓派网络的配置 首先,对树莓派进行网络配置,否则就无法进行软件的安装 我们知道,ifconfig命令可以修改ip地址.子网掩码等信息,但是当设备重启之后必须重新设置 因此,我们使用如下方法进行网络配置 修改/etc/network/interfaces 其中,红色框选中的为需要修改的部分 auto eth0 //设为开机启动eth0 iface eth0 inet static //设为静态ip address 10.215.

  • Opencv实现读取摄像头和视频数据

    实际上,按一定速度读取摄像头视频图像后,便可以对图像进行各种处理了. 那么获取主要用到的是VideoCapture类,一个demo如下: //如果有外接摄像头,则ID为0,内置为1,否则用0就可以表示内置摄像头 cv::VideoCapture cap(0); //判断摄像头是否打开 if(!cap.isOpened()) { return -1; } cv::Mat myframe; cv::Mat edges; bool stop = false; while(!stop) { //获取当前

  • OpenCV2从摄像头获取帧并写入视频文件的方法

    一段基于OpenCV2的代码. 作用是从摄像头获取帧并将帧写入指定的视频文件中. 需要注意的是,视频文件所在的路径需要存在,例如D:/images/1.avi.images这个目录需要存在.调用VideoWrite类对象的成员函数open时,编解码方式参数设置为-1,代码运行时会弹出对话框,手动选择编解码方式. #include<opencv2\highgui\highgui.hpp> #include<opencv2\imgproc\imgproc.hpp> #include&l

  • OpenCV-Python 摄像头实时检测人脸代码实例

    参考 OpenCV摄像头使用 代码 import cv2 cap = cv2.VideoCapture(4) # 使用第5个摄像头(我的电脑插了5个摄像头) face_cascade = cv2.CascadeClassifier(r'haarcascade_frontalface_default.xml') # 加载人脸特征库 while(True): ret, frame = cap.read() # 读取一帧的图像 gray = cv2.cvtColor(frame, cv2.COLOR_

  • python opencv捕获摄像头并显示内容的实现

    1.捕获摄像头和实时显示 import cv2 import numpy as np import pickle import matplotlib.pyplot as plt cap = cv2.VideoCapture(0) while True: ret,frame = cap.read() # Our operations on the frame come here gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Display the

  • Python OpenCV调用摄像头检测人脸并截图

    本文实例为大家分享了Python OpenCV调用摄像头检测人脸并截图的具体代码,供大家参考,具体内容如下 注意:需要在python中安装OpenCV库,同时需要下载OpenCV人脸识别模型haarcascade_frontalface_alt.xml,模型可在OpenCV-PCA-KNN-SVM_face_recognition中下载. 使用OpenCV调用摄像头检测人脸并连续截图100张 #-*- coding: utf-8 -*- # import 进openCV的库 import cv2

  • python+openCV调用摄像头拍摄和处理图片的实现

    在深度学习过程中想做手势识别相关应用,需要大量采集手势图片进行训练,作为一个懒人当然希望飞快的连续采集图片并且采集到的图片就已经被处理成统一格式的啦..于是使用python+openCV调用摄像头,在采集图片的同时顺便处理成想要的格式. 详细代码如下: import cv2 import os print("=============================================") print("= 热键(请在摄像头的窗口使用): =") pri

  • python+opencv+caffe+摄像头做目标检测的实例代码

    首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持Linux万能驱动兼容V4L2的摄像头, 因为之前用学ARM的时候使用的Smart210,我已经确认我的摄像头是支持的, 我把摄像头插上之後自然就在 /dev 目录下看到多了一个video0的文件, 这个就是摄像头的设备文件了,所以我就没有额外处理驱动的部分 一.检测环境 再来在开始前因为之前按着国嵌的指导手册安

  • Python OpenCV 调用摄像头并截图保存功能的实现代码

    0x01 OpenCV安装 通过命令pip install opencv-python 安装 pip install opencv-python 0x02  示例 import cv2 cap = cv2.VideoCapture(0) #打开摄像头 while(1): # get a frame ret, frame = cap.read() # show a frame cv2.imshow("capture", frame) #生成摄像头窗口 if cv2.waitKey(1)

  • python+opencv打开摄像头,保存视频、拍照功能的实现方法

    以下代码是保存视频 # coding:utf-8 import cv2 import sys reload(sys) sys.setdefaultencoding('utf8') cap = cv2.VideoCapture(0) cap.set(3,640) cap.set(4,480) cap.set(1, 10.0) #此处fourcc的在MAC上有效,如果视频保存为空,那么可以改一下这个参数试试, 也可以是-1 fourcc = cv2.cv.CV_FOURCC('m', 'p', '4

  • python opencv 实现读取、显示、写入图像的方法

    opencv是一个强大的图像处理和计算机视觉库,实现了很多实用算法,值得学习和深究下. opencv包安装 · 这里直接安装opencv-python包(非官方): pip install opencv-python 官方文档:https://opencv-python-tutroals.readthedocs.io/en/latest/ 1.读取图像 import cv2 image=cv2.imread("dog2.jpg",1) 说明: 第二个参数是一个标志,它指定了读取图像的方

  • python openCV实现摄像头获取人脸图片

    本文实例为大家分享了python openCV实现摄像头获取人脸图片的具体代码,供大家参考,具体内容如下 在机器学习中,训练模型需要大量图片,通过openCV中的库可以快捷的调用摄像头,截取图片,可以快速的获取大量人脸图片 需要注意将CascadeClassifier方法中的地址改为自己包cv2包下面的文件 import cv2 def load_img(path,name,mun = 100,add_with = 0): # 获取人脸识别模型 # # #以下路径需要更改为自己环境下xml文件

随机推荐