Python进阶:生成器 懒人版本的迭代器详解

从容器、可迭代对象谈起

所有的容器都是可迭代的(iterable),迭代器提供了一个next方法。iter()返回一个迭代器,通过next()函数可以实现遍历。

def is_iterable(param):
try:
iter(param)
return True
except TypeError:
return False
params = [
1234,
'1234',
[1, 2, 3, 4],
set([1, 2, 3, 4]),
{1:1, 2:2, 3:3, 4:4},
(1, 2, 3, 4)
]
for param in params:
print('{} is iterable? {}'.format(param, is_iterable(param)))
########## 输出 ##########
# 1234 is iterable? False
# 1234 is iterable? True
# [1, 2, 3, 4] is iterable? True
# {1, 2, 3, 4} is iterable? True
# {1: 1, 2: 2, 3: 3, 4: 4} is iterable? True
# (1, 2, 3, 4) is iterable? True

除了数字外,其他数据结构都是可迭代的。

生成器是什么

生成器是懒人版本的迭代器。例:

import os
import psutil

#显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid)

info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory))

def test_iterator():
show_memory_info('initing iterator')
list_1 = [i for i in range(100000000)]
show_memory_info('after iterator initiated')
print(sum(list_1))
show_memory_info('after sum called')

def test_generator():
show_memory_info('initing generator')
list_2 = (i for i in range(100000000))
show_memory_info('after generator initiated')
print(sum(list_2))
show_memory_info('after sum called')

test_iterator()
test_generator()
%time test_iterator()
%time test_generator()

######### 输出 ##########

initing iterator memory used: 48.9765625 MB
after iterator initiated memory used: 3920.30078125 MB
4999999950000000
after sum called memory used: 3920.3046875 MB
Wall time: 17 s
initing generator memory used: 50.359375 MB
after generator initiated memory used: 50.359375 MB
4999999950000000
after sum called memory used: 50.109375 MB
Wall time: 12.5 s

[i for i in range(100000000)] 声明了一个迭代器,每个元素在生成后都会保存到内存中,占用了巨量的内存。(i for i in range(100000000)) 初始化了一个生成器,可以看到,生成器并不会像迭代器一样占用大量的内存,相比于 test_iterator(),test_generator()函数节省了一次生成一亿个元素的过程。在调用next()的时候,才会生成下一个变量.

生成器能玩啥花样

数学中有一个恒等式,(1 + 2 + 3 + ... + n)^2 = 1^3 + 2^3 + 3^3 + ... + n^3,用以下代码表达

def generator(k):
i = 1
while True:
yield i ** k
i += 1

gen_1 = generator(1)
gen_3 = generator(3)
print(gen_1)
print(gen_3)

def get_sum(n):
sum_1, sum_3 = 0, 0
for i in range(n):
next_1 = next(gen_1)
next_3 = next(gen_3)
print('next_1 = {}, next_3 = {}'.format(next_1, next_3))
sum_1 += next_1
sum_3 += next_3
print(sum_1 * sum_1, sum_3)

get_sum(8)

########## 输出 ##########

# <generator object generator at 0x000001E70651C4F8>
# <generator object generator at 0x000001E70651C390>
# next_1 = 1, next_3 = 1
# next_1 = 2, next_3 = 8
# next_1 = 3, next_3 = 27
# next_1 = 4, next_3 = 64
# next_1 = 5, next_3 = 125
# next_1 = 6, next_3 = 216
# next_1 = 7, next_3 = 343
# next_1 = 8, next_3 = 512
# 1296 1296

generator()这个函数,它返回了一个生成器,当运行到yield i ** k时,暂停并把i ** k作为next()的返回值。每次调用next(gen)时,暂停的程序会启动并往下执行,而且i的值也会被记住,继续累加,最后next_1为8,next_3为512.

仔细查看这个示例,发现迭代器是一个有限集合,生成器则可以成为一个无限集。调用next(),生成器根据运算会自动生成新的元素,然后返回给你,非常便捷。

再来看一个问题:给定一个list和一个指定数字,求这个数字在list中的位置:

#常规写法
def index_normal(L, target):
result = []
for i, num in enumerate(L):
if num == target:
result.append(i)
return result
print(index_normal([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2))
########## 输出 ##########
[2, 5, 9]
#生成器写法
def index_generator(L, target):
for i, num in enumerate(L):
if num == target:
yield i
print(list(index_generator([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2)))
######### 输出 ##########
[2, 5, 9]

再看一例子:

查找子序列:给定两个字符串a,b,查找字符串a是否字符串b的子序列,所谓子序列,即一个序列包含在另一个序列中并且顺序一

算法:分别用两个指针指向两个字符串的头,然后往后移动找出相同的值,如果其中一个指针走完了整个字符串也没有相同的值,则不是子序列

def is_subsequence(a, b):
b = iter(b)
return all(i in b for i in a)
print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))
######### 输出 ##########
True
False

下面代码为上面代码的演化版本

def is_subsequence(a, b):
b = iter(b)
print(b)

gen = (i for i in a)
print(gen)

for i in gen:
print(i)

gen = ((i in b) for i in a)
print(gen)

for i in gen:
print(i)

return all(((i in b) for i in a))

print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))

########## 输出 ##########

# <list_iterator object at 0x000001E7063D0E80>
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570>
# 1
# 3
# 5
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8>
# True
# True
# True
# False
# <list_iterator object at 0x000001E7063D0D30>
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8>
# 1
# 4
# 3
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570>
# True
# True
# False
# False

首先iter(b)把b转为迭代器。目的是内部实现next函数,(i for i in a) 会产生一个生成器 ,同样((i in b) for i in a)也是。然后(i in b)等阶于:

while True:
val = next(b)
if val == i:
yield True

这里非常巧妙地利用生成器的特性,next()函数运行的时候,保存了当前的指针。比如下面这个示例

b = (i for i in range(5))
print(2 in b)
print(4 in b)
print(3 in b)
########## 输出 ##########
True
True
False

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 举例讲解Python中的迭代器、生成器与列表解析用法

    迭代器:初探 上一章曾经提到过,其实for循环是可用于任何可迭代的对象上的.实际上,对Python中所有会从左至右扫描对象的迭代工具而言都是如此,这些迭代工具包括了for循环.列表解析.in成员关系测试以及map内置函数等. "可迭代对象"的概念在Python中是相当新颖的,基本这就是序列观念的通用化:如果对象时实际保存的序列,或者可以再迭代工具环境中一次产生一个结果的对象,那就看做是可迭代的. >>文件迭代器 作为内置数据类型的文件也是可迭代的,它有一个名为__next_

  • 浅谈Python中的可迭代对象、迭代器、For循环工作机制、生成器

    1.iterable iterator区别 要了解两者区别,先要了解一下迭代器协议: 迭代器协议是指:对象需要提供__next__()方法,它返回迭代中的元素,在没有更多元素后,抛出StopIteration异常,终止迭代. 可迭代对象就是:实现了迭代器协议的对象. 协议是一种约定,可迭代对象实现迭代器协议,Python的内置工具(如for循环,sum,min,max函数等)通过迭代器协议访问对象,因此,for循环并不需要知道对象具体是什么,只需要知道对象能够实现迭代器协议即可. 迭代器(ite

  • Python3中的列表生成式、生成器与迭代器实例详解

    本文实例讲述了Python3中的列表生成式.生成器与迭代器.分享给大家供大家参考,具体如下: 列表生成式 Python内置的一种极其强大的生成列表 list 的表达式.返回结果必须是列表. 基本语法: [ 变量表达式 for 变量 in 表达式 ] 示例 a = [x ** 2 for x in range(1, 10)] b = [x * x for x in range(1, 11) if x % 2 == 0] c = [m + n for m in 'ABC' for n in '123

  • 解析Python中的生成器及其与迭代器的差异

    生成器 生成器是一种迭代器,是一种特殊的函数,使用yield操作将函数构造成迭代器.普通的函数有一个入口,有一个返回值:当函数被调用时,从入口开始执行,结束时返回相应的返回值.生成器定义的函数,有多个入口和多个返回值:对生成器执行next()操作,进行生成器的入口开始执行代码,yield操作向调用者返回一个值,并将函数挂起:挂起时,函数执行的环境和参数被保存下来:对生成器执行另一个next()操作时,参数从挂起状态被重新调用,进入上次挂起的执行环境继续下面的操作,到下一个yield操作时重复上面

  • 老生常谈Python之装饰器、迭代器和生成器

    在学习python的时候,三大"名器"对没有其他语言编程经验的人来说,应该算是一个小难点,本次博客就博主自己对装饰器.迭代器和生成器理解进行解释. 为什么要使用装饰器 什么是装饰器?"装饰"从字面意思来谁就是对特定的建筑物内按照一定的思路和风格进行美化的一种行为,所谓"器"就是工具,对于python来说装饰器就是能够在不修改原始的代码情况下给其添加新的功能,比如一款软件上线之后,我们需要在不修改源代码和不修改被调用的方式的情况下还能为期添加新的功

  • Python进阶:生成器 懒人版本的迭代器详解

    从容器.可迭代对象谈起 所有的容器都是可迭代的(iterable),迭代器提供了一个next方法.iter()返回一个迭代器,通过next()函数可以实现遍历. def is_iterable(param): try: iter(param) return True except TypeError: return False params = [ 1234, '1234', [1, 2, 3, 4], set([1, 2, 3, 4]), {1:1, 2:2, 3:3, 4:4}, (1, 2

  • Python中生成器和yield语句的用法详解

    在开始课程之前,我要求学生们填写一份调查表,这个调查表反映了它们对Python中一些概念的理解情况.一些话题("if/else控制流" 或者 "定义和使用函数")对于大多数学生是没有问题的.但是有一些话题,大多数学生只有很少,或者完全没有任何接触,尤其是"生成器和yield关键字".我猜这对大多数新手Python程序员也是如此. 有事实表明,在我花了大功夫后,有些人仍然不能理解生成器和yield关键字.我想让这个问题有所改善.在这篇文章中,我将解

  • python函数式编程学习之yield表达式形式详解

    前言 yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法.最近又重新学习了下,所以整理了下面这篇文章,供自己和大家学习参考,下面话不多说了,来一起看看详细的介绍吧. 先来看一个例子 def foo(): print("starting...") while True: res = yield print("res:",res) g = foo() next(g) 在上面的例子里,因为foo函数中有yield关键字,所以

  • Python学习之迭代器详解

    目录 什么是迭代器 如何生成迭代器 迭代器函数 - iter() 函数 与 next() 函数 可迭代的对象 生成迭代器 迭代器的用法 - 演示案例 什么是迭代器 迭代是 python 中访问集合元素的一种非常强大的一种方式.迭代器是一个可以记住遍历位置的对象,因此不会像列表那样一次性全部生成,而是可以等到用的时候才生成,因此节省了大量的内存资源.迭代器对象从集合中的第一个元素开始访问,直到所有的元素被访问完.迭代器有两个方法:iter()和 next()方法. 这么解释可能不太直观,我们以生活

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • 使用 Python 破解压缩文件的密码的思路详解

    经常遇到百度网盘的压缩文件加密了,今天我们就破解它! 实现思路 上篇文章给大家介绍了爆破密码的思路,感兴趣的朋友可以了解下. 其实都大同小异:无非就是字典爆破,就看你是有现成密码字典,还是自己生成密码字典,然后进行循环输入密码,直到输入正确位置.现在很多都有防爆破限制,根本无法进行暴力破解,但是似乎zip这种大家都是用比较简单的密码而且没有什么限制. 因此 实现思路就是 生成字典->输入密码->成功解压 实现过程 1.  生成字典 生成密码字典其实就是一个字符组合的过程.小伙伴们可别用列表去组

  • Ruby中的迭代器详解

    D瓜哥最近想做一个网站,另外,老早就有学习一门动态语言的想法,满足着两个条件的编程语言中,Ruby.Python是最合适的两种语言.现在Ruby on Rails如日中天,光芒万丈!所以,就选定了Ruby,从零开始学习. 前天看了Ruby的迭代器,对于我这个只学过Java.C/C++等的人来说,绝对是眼前一亮的感觉!而且是光彩夺目:没想到迭代器还可以这么玩,太简练太方便而且特别强大!然后,D瓜哥就迫不及待的想写一篇文章给大家介绍介绍Ruby的迭代器! 迭代器简介 先简单介绍一下迭代器. 1.一个

  • python魔法方法-属性转换和类的表示详解

    类型转换魔法 类型转换魔法其实就是实现了str.int等工厂函数的结果,通常这些函数还有类型转换的功能,下面是一些相关的魔法方法: •__int__(self) •转换成整型,对应int函数. •__long__(self) •转换成长整型,对应long函数. •__float__(self) •转换成浮点型,对应float函数. •__complex__(self) •转换成 复数型,对应complex函数. •__oct__(self) •转换成八进制,对应oct函数. •__hex__(s

  • 使用 Python 在京东上抢口罩的思路详解

    全国抗"疫"这么久终于见到曙光,在家待了将近一个月,现在终于可以去上班了,可是却发现出门必备的口罩却一直买不到.最近看到京东上每天都会有口罩的秒杀活动,试了几次却怎么也抢不到,到了抢购的时间,浏览器的页面根本就刷新不出来,等刷出来秒杀也结束了.现在每天只放出一万个,却有几百万人在抢,很想知道别人是怎么抢到的,于是就在网上找了大神公开出来的抢购代码.看了下代码并不复杂,现在我们就报着学习的态度一起看看. 使用模块 首先打开项目中 requirements.txt 文件,看下它都需要哪些模

  • Python学习之函数的定义与使用详解

    目录 函数的定义 函数的分类 函数的创建方法-def 函数的返回值-return return与print的区别 函数的传参 必传参数 默认参数 不确定参数(可变参数) 参数规则 函数小练习 函数的参数类型定义 全局变量与局部变量 全局变量 局部变量 global关键字 递归函数 递归函数的定义方法 递归函数的说明 lambda-匿名函数 函数练习 函数的定义 什么是函数? — > 函数是具有某种特定功能的代码块,可以重复使用(在前面数据类型相关章节,其实已经出现了很多 Python 内置函数了

随机推荐