对numpy中array和asarray的区别详解

array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会。

举例说明:

import numpy as np 

#example 1:
data1=[[1,1,1],[1,1,1],[1,1,1]]
arr2=np.array(data1)
arr3=np.asarray(data1)
data1[1][1]=2
print 'data1:\n',data1
print 'arr2:\n',arr2
print 'arr3:\n',arr3 

输出:

data1:
[[1, 1, 1], [1, 2, 1], [1, 1, 1]]
arr2:
[[1 1 1]
 [1 1 1]
 [1 1 1]]
arr3:
[[1 1 1]
 [1 1 1]
 [1 1 1]] 

可见array和asarray没有区别,都对元数据进行了复制。

import numpy as np 

#example 2:
arr1=np.ones((3,3))
arr2=np.array(arr1)
arr3=np.asarray(arr1)
arr1[1]=2
print 'arr1:\n',arr1
print 'arr2:\n',arr2
print 'arr3:\n',arr3 

输出:

arr1:
[[ 1. 1. 1.]
 [ 2. 2. 2.]
 [ 1. 1. 1.]]
arr2:
[[ 1. 1. 1.]
 [ 1. 1. 1.]
 [ 1. 1. 1.]]
arr3:
[[ 1. 1. 1.]
 [ 2. 2. 2.]
 [ 1. 1. 1.]] 

此时两者才表现出区别

以上这篇对numpy中array和asarray的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 基于Python Numpy的数组array和矩阵matrix详解
  • 对numpy的array和python中自带的list之间相互转化详解
(0)

相关推荐

  • 对numpy的array和python中自带的list之间相互转化详解

    a=([3.234,34,3.777,6.33]) a为python的list类型 将a转化为numpy的array: np.array(a) array([ 3.234, 34. , 3.777, 6.33 ]) 将a转化为python的list a.tolist() 以上这篇对numpy的array和python中自带的list之间相互转化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python创建二维数组实例(关于list的一个

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • 对numpy中array和asarray的区别详解

    array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 举例说明: import numpy as np #example 1: data1=[[1,1,1],[1,1,1],[1,1,1]] arr2=np.array(data1) arr3=np.asarray(data1) data1[1][1]=2 print 'data1:\n',data1 print 'ar

  • 在Python3 numpy中mean和average的区别详解

    mean和average都是计算均值的函数,在不指定权重的时候average和mean是一样的.指定权重后,average可以计算一维的加权平均值. 具体如下: import numpy as np a = np.array([np.random.randint(0, 20, 5), np.random.randint(0, 20, 5)]) print('原始数据\n', a) print('mean函数'.center(20, '*')) print('对所有数据计算\n', a.mean(

  • 关于numpy中eye和identity的区别详解

    两个函数的原型为: np.identity(n, dtype=None) np.eye(N, M=None, k=0, dtype=<type 'float'>): np.identity只能创建方形矩阵 np.eye可以创建矩形矩阵,且k值可以调节,为1的对角线的位置偏离度,0居中,1向上偏离1,2偏离2,以此类推,-1向下偏离.值绝对值过大就偏离出去了,整个矩阵就全是0了. 以上这篇关于numpy中eye和identity的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希

  • 基于numpy.random.randn()与rand()的区别详解

    numpy 中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, -, dn) 是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, -, dn) 的随机样本位于[0, 1)中. import numpy as np arr1 = np.random.randn(2,4) print(arr1) print('**********************************

  • python_array[0][0]与array[0,0]的区别详解

    在学习python的时候, 看到有些 代码中使用array[0][0] 来提取位置元素 不太明白. 动手实验了一下 import numpy as np a = np.array([np.arange(12),np.arange(12,24)]) >>>print a [[ 0 1 2 3 4 5 6 7 8 9 10 11] [12 13 14 15 16 17 18 19 20 21 22 23]] >>>print a[0][6] 6 [0][6] means:

  • Pandas中的unique()和nunique()区别详解

    Pandas中Series和DataFrame的两种数据类型中都有nunique()和unique()方法.这两个方法作用很简单,都是求Series或Pandas中的不同值.而unique()方法返回的是去重之后的不同值,而nunique()方法则直接放回不同值的个数. 具体如下: 如果Series或DataFrame中没有None值,则unique()方法返回的序列数据的长度等于nunique()方法的返回值(如上述代码中所展示的).则当Series或DataFrame中有None值时,这两个

  • iOS中setValue和setObject的区别详解

    网上关于setValue和setObject的区别的文章很多,说的并不准确,首先我们得知道: setObject:ForKey: 是NSMutableDictionary特有的:setValue:ForKey:是KVC的主要方法 话不多说,上代码: - (void)viewDidLoad { [super viewDidLoad]; //setObject和setvalue的区别 NSMutableDictionary *dic = [NSMutableDictionary dictionary

  • 关于numpy中np.nonzero()函数用法的详解

    np.nonzero函数是numpy中用于得到数组array中非零元素的位置(数组索引)的函数.一般来说,通过help(np.nonzero)能够查看到该函数的解析与例程.但是,由于例程为英文缩写,阅读起来还是很费劲,因此,本文将其英文解释翻译成中文,便于理解. 解释 nonzero(a) 返回数组a中非零元素的索引值数组. (1)只有a中非零元素才会有索引值,那些零值元素没有索引值: (2)返回的索引值数组是一个2维tuple数组,该tuple数组中包含一维的array数组.其中,一维arra

  • 对numpy中的transpose和swapaxes函数详解

    transpose() 这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数. 我们看如下一个numpy的数组: `arr=np.arange(16).reshape((2,2,4)) arr= array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]]) ` 那么有: arr.transpose(2,1,0) array([[[ 0, 8], [ 4, 12]], [[ 1

  • 对numpy中的数组条件筛选功能详解

    在程序设计中,时常会遇到数据的唯一化.相同.相异信息的提取等工作,在格式化的向量存储矩阵中南,numpy能够提供比较不错的快速处理功能. 1,唯一化的实现: In [63]: data = np.array(['int','float','int','boolean','double','boolean']) In [64]: data Out[64]: array(['int', 'float', 'int', 'boolean', 'double', 'boolean'], dtype='|

随机推荐