pandas的唯一值、值计数以及成员资格的示例

1、Series唯一值判断

 s = Series([3,3,1,2,4,3,4,6,5,6])
 #判断Series中的值是否重复,False表示重复
 print(s.is_unique)
 #False
 #输出Series中不重复的值,返回值没有排序,返回值的类型为数组
 print(s.unique())
 #[3 1 2 4 6 5]
 print(type(s.unique()))
 #<class 'numpy.ndarray'>
 #统计Series中重复值出现的次数,默认是按出现次数降序排序
 print(s.value_counts())
 '''
 3 3
 6 2
 4 2
 5 1
 2 1
 1 1
 '''
 #按照重复值的大小排序输出频率
 print(s.value_counts(sort=False))
 '''
 1 1
 2 1
 3 3
 4 2
 5 1
 6 2
 '''

2、成员资格判断

a、Series的成员资格

 s = Series([5,5,6,1,1])
 print(s)
 '''
 0 5
 1 5
 2 6
 3 1
 4 1
 '''
 #判断矢量化集合的成员资格,返回一个bool类型的Series
 print(s.isin([5]))
 '''
 0  True
 1  True
 2 False
 3 False
 4 False
 '''
 print(type(s.isin([5])))
 #<class 'pandas.core.series.Series'>
 #通过成员资格方法选取Series中的数据子集
 print(s[s.isin([5])])
 '''
 0 5
 1 5
 '''

b、DataFrame的成员资格

 a = [[3,2,6],[2,1,4],[6,2,5]]
 data = DataFrame(a,index=["a","b","c"],columns=["one","two","three"])
 print(data)
 '''
  one two three
 a 3 2  6
 b 2 1  4
 c 6 2  5
 '''
 #返回一个bool的DataFrame
 print(data.isin([1]))
 '''
   one two three
 a False False False
 b False True False
 c False False False
 '''
 #选取DataFrame中值为1的数,其他的为NaN
 print(data[data.isin([1])])
 '''
  one two three
 a NaN NaN NaN
 b NaN 1.0 NaN
 c NaN NaN NaN
 '''
 #将NaN用0进行填充
 print(data[data.isin([1])].fillna(0))
 '''
  one two three
 a 0.0 0.0 0.0
 b 0.0 1.0 0.0
 c 0.0 0.0 0.0
 '''

以上这篇pandas的唯一值、值计数以及成员资格的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python+pandas计算数据相关系数的实例

    本文主要演示pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数.Kendall Tau相关系数和spearman秩相关). >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10), 'B':np.random

  • pandas数值计算与排序方法

    以下代码是基于python3.5.0编写的 import pandas food_info = pandas.read_csv("food_info.csv") # ---------------------特定列加减乘除------------------------- print(food_info["Iron_(mg)"]) div_1000 = food_info["Iron_(mg)"] / 1000 add_100 = food_in

  • pandas的唯一值、值计数以及成员资格的示例

    1.Series唯一值判断 s = Series([3,3,1,2,4,3,4,6,5,6]) #判断Series中的值是否重复,False表示重复 print(s.is_unique) #False #输出Series中不重复的值,返回值没有排序,返回值的类型为数组 print(s.unique()) #[3 1 2 4 6 5] print(type(s.unique())) #<class 'numpy.ndarray'> #统计Series中重复值出现的次数,默认是按出现次数降序排序

  • Python 实现过滤掉列表中唯一值

    目录 1.filter_unique 2.collections.Counter 3.列表推导式 4.filter_non_unique 1.filter_unique from collections import Counter def filter_unique(lst): return [item for item, count in Counter(lst).items() if count > 1] # EXAMPLES filter_unique([1, 2, 2, 3, 4, 4

  • pandas去除重复值的实战

    目录 加载数据 sample抽样函数 指定需要更新的值 append直接添加 append函数用法 根据某一列key值进行去重(key唯一) 加载数据 首先,我们需要加载到所需要的数据,这里我们所需要的数据是同过sample函数采样过来的. import pandas as pd #这里说明一下,clean_beer.csv数据有两千多行数据 #所以从其中采样一部分,来进行演示,当然可以简单实用data.head()也可以做练习 data = pd.read_csv('clean_beer.cs

  • c#唯一值渲染实例代码

    该着色方法一句着色图层中要素类的某个数值字段的属性值,按这个属性值为每种不同值得要素单独分配一种显示符号样式.关键在于获取该字段所有要素的唯一值(即将所有在该字段中属性值相同的要素归为一种),利用UniqueValueRenderer的AddValue方法即可进行渲染 需要添加的类库 复制代码 代码如下: using System.Collections;using System.Windows.Forms;using ESRI.ArcGIS.Display;using ESRI.ArcGIS.

  • C#生成唯一值的方法汇总

    生成唯一值的方法很多,下面就不同环境下生成的唯一标识方法一一介绍,作为工作中的一次总结,有兴趣的可以自行测试: 一.在 .NET 中生成 1.直接用.NET Framework 提供的 Guid() 函数,此种方法使用非常广泛.GUID(全局统一标识符)是指在一台机器上生成的数字,它保证对在同一时空中的任何两台计算机都不会生成重复的 GUID 值(即保证所有机器都是唯一的).关于GUID的介绍在此不作具体熬述,想深入了解可以自行查阅MSDN.代码如下: 复制代码 代码如下: using Syst

  • pandas 将索引值相加的方法

    如下所示: s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) s2 = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd']) print s1 + s2 a 11 b 22 c 33 d 44 dtype: int64 s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) s2 = pd.Series([10, 20

  • python查看列的唯一值方法

    查看某一列中有多少中取值: 数据集名.drop_duplicates(['列名']) #实际为删除重复项,删除后对原数据集不修改 输入:data.drop_duplicates(['name']) 输出:  1   zhangsan 2    lisi 3    wangwu 以上这篇python查看列的唯一值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • PostgreSQL利用递归优化求稀疏列唯一值的方法

    在数据库中经常会碰到一些表的列是稀疏列,只有很少的值,例如性别字段,一般就只有2种不同的值. 但是当我们求这些稀疏列的唯一值时,如果表的数据量很大,速度还是会很慢. 例如: 创建测试表 bill=# create table t_sex (sex char(1), otherinfo text); CREATE TABLE bill=# insert into t_sex select 'm', generate_series(1,10000000)||'this is test'; INSER

  • pandas统计重复值次数的方法实现

    本文主要介绍了pandas统计重复值次数的方法实现,分享给大家,具体如下: from pandas import DataFrame df = DataFrame({'key1':['a','a','b','b','a','a'], 'key2':['one','two','one','two','one','one'], 'data1':[1,2,3,2,1,1], # 'data2':np.random.randn(5) }) # 打印数据框 print(df) # data1 key1 k

  • Pandas多列值合并成一列的实现

    在平时的需求开发中涉及到将多列值合并为一列值的操作,通过查阅相关资料特此记录以下方法,方便日后学习复盘 import pandas as pd import numpy as np df = pd.DataFrame(data={'语文':[50,90,70,78,60], '数学':[59,80,60,75,69], '英语':[61,95,65,80,59]}, index=['Harry','Andy','Rita','Lee','Jack']) # 添加'总分'字段 df['总分'] =

随机推荐