python中copy()与deepcopy()的区别小结

前言

copy()与deepcopy()之间的区分必须要涉及到python对于数据的存储方式。

深复制被复制对象完全再复制一遍作为独立的新个体单独存在。所以改变原有被复制对象不会对已经复制出来的新对象产生影响。

浅复制并不会产生一个独立的对象单独存在,他只是将原有的数据块打上一个新标签,所以当其中一个标签被改变的时候,数据块就会发生变化,另一个标签也会随之改变。

import copy
 origin = [1, 2, [3, 4]]
#origin 里边有三个元素:1, 2,[3, 4]
cop1 = copy.copy(origin)
cop2 = copy.deepcopy(origin)
cop1 == cop2
------>True
 cop1 is cop2
------>False
#cop1 和 cop2 看上去相同,但已不再是同一个object
 origin[2][0] = "hey!"
 origin
------>[1, 2, ['hey!', 4]]
 cop1
------>[1, 2, ['hey!', 4]]
 cop2
------>[1, 2, [3, 4]]

可以看到 cop1,也就是 copy 跟着 origin 改变了。而 cop2 ,也就是 deep copy 并没有变。

Python存储方式

Python 存储变量的方法跟其他 OOP 语言不同。它与其说是把值赋给变量,不如说是给变量建立了一个到具体值的 reference。

当在 Python 中 a = something 应该理解为给 something 贴上了一个标签 a。当再赋值给 a 的时候,就好象把 a 这个标签从原来的 something 上拿下来,贴到其他对象上,建立新的 reference。 这就解释了一些 Python 中可能遇到的诡异情况:

>> a = [1, 2, 3]
>>> b = a
>>> a = [4, 5, 6] //赋新的值给 a
>>> a
[4, 5, 6]
>>> b
[1, 2, 3]
# a 的值改变后,b 并没有随着 a 变

>>> a = [1, 2, 3]
>>> b = a
>>> a[0], a[1], a[2] = 4, 5, 6 //改变原来 list 中的元素
>>> a
[4, 5, 6]
>>> b
[4, 5, 6]
# a 的值改变后,b 随着 a 变了

上面两段代码中,a 的值都发生了变化。区别在于,第一段代码中是直接赋给了 a 新的值(从 [1, 2, 3] 变为 [4, 5, 6]);而第二段则是把 list 中每个元素分别改变。

而对 b 的影响则是不同的,一个没有让 b 的值发生改变,另一个变了。怎么用上边的道理来解释这个诡异的不同呢?

首次把 [1, 2, 3] 看成一个物品。a = [1, 2, 3] 就相当于给这个物品上贴上 a 这个标签。而 b = a 就是给这个物品又贴上了一个 b 的标签。

第一种情况:

a = [4, 5, 6] 就相当于把 a 标签从 [1 ,2, 3] 上撕下来,贴到了 [4, 5, 6] 上。

在这个过程中,[1, 2, 3] 这个物品并没有消失。 b 自始至终都好好的贴在 [1, 2, 3] 上,既然这个 reference 也没有改变过。 b 的值自然不变。

第二种情况:

a[0], a[1], a[2] = 4, 5, 6 则是直接改变了 [1, 2, 3] 这个物品本身。把它内部的每一部分都重新改装了一下。内部改装完毕后,[1, 2, 3] 本身变成了 [4, 5, 6]。

而在此过程当中,a 和 b 都没有动,他们还贴在那个物品上。因此自然 a b 的值都变成了 [4, 5, 6]。

搞明白这个之后就要问了,对于一个复杂对象的浅copy,在copy的时候到底发生了什么?
再看一段代码:

>>> import copy
>>> origin = [1, 2, [3, 4]]
#origin 里边有三个元素:1, 2,[3, 4]
>>> cop1 = copy.copy(origin)
>>> cop2 = copy.deepcopy(origin)
>>> cop1 == cop2
True
>>> cop1 is cop2
False
#cop1 和 cop2 看上去相同,但已不再是同一个object
>>> origin[2][0] = "hey!"
>>> origin
[1, 2, ['hey!', 4]]
>>> cop1
[1, 2, ['hey!', 4]]
>>> cop2
[1, 2, [3, 4]]
#把origin内的子list [3, 4] 改掉了一个元素,观察 cop1 和 cop2

学过docker的人应该对镜像这个概念不陌生,我们可以把镜像的概念套用在copy上面。

概念图如下:

copy对于一个复杂对象的子对象并不会完全复制,什么是复杂对象的子对象呢?就比如序列里的嵌套序列,字典里的嵌套序列等都是复杂对象的子对象。对于子对象,python会把它当作一个公共镜像存储起来,所有对他的复制都被当成一个引用,所以说当其中一个引用将镜像改变了之后另一个引用使用镜像的时候镜像已经被改变了。

所以说看这里的origin[2],也就是 [3, 4] 这个 list。根据 shallow copy 的定义,在 cop1[2] 指向的是同一个 list [3, 4]。那么,如果这里我们改变了这个 list,就会导致 origin 和 cop1 同时改变。这就是为什么上边 origin[2][0] = “hey!” 之后,cop1 也随之变成了 [1, 2, [‘hey!', 4]]。

而deepcopy概念图如下:

deepcopy的时候会将复杂对象的每一层复制一个单独的个体出来。

这时候的 origin[2] 和 cop2[2] 虽然值都等于 [3, 4],但已经不是同一个 list了。即我们寻常意义上的复制。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • Python中使用copy模块实现列表(list)拷贝

    引用是指保存的值为对象的地址.在 Python 语言中,一个变量保存的值除了基本类型保存的是值外,其它都是引用,因此对于它们的使用就需要小心一些.下面举个例子: 问题描述:已知一个列表,求生成一个新的列表,列表元素是原列表的复制 复制代码 代码如下: a=[1,2] b=a 这种做法其实并未真正生成一个新的列表,b指向的仍然是a所指向的对象.这样,如果对a或b的元素进行修改,a,b的值同时发生变化. 解决的方法为: 复制代码 代码如下: a=[1,2] b=a[:] 这样修改a对b没有影响.修改

  • Python 拷贝对象(深拷贝deepcopy与浅拷贝copy)

    1. copy.copy 浅拷贝 只拷贝父对象,不会拷贝对象的内部的子对象.2. copy.deepcopy 深拷贝 拷贝对象及其子对象一个很好的例子: Code highlighting produced by Actipro CodeHighlighter (freeware) http://www.CodeHighlighter.com/ -->import copya = [1, 2, 3, 4, ['a', 'b']]  #原始对象b = a  #赋值,传对象的引用c = copy.c

  • Python中的复制操作及copy模块中的浅拷贝与深拷贝方法

    程序中常常需要复制一个对象, 按思路应该是这样的 a = [1, 2, 3] b = a # [1, 2, 3] print b 已经复制好了,但是现在得改变一下第一个元素的值把它改成5 b[0] = 5 # [5, 2, 3] print b # [5, 2, 3] print a 我改变了b的第一个元素的值,但是a的值也改变了,这是因为python中的=是引用.a和b指向的是相同的列表,所以改变列表会出现以上的结果. 解决方法是切片操作 a = [1, 2, 3] b = a[:] b[0]

  • 浅谈Python中copy()方法的使用

    copy()方法返回字典的浅拷贝. 语法 以下是copy()方法的语法: dict.copy() 参数 NA 返回值 此方法返回字典的浅拷贝. 例子 下面的例子显示了copy()方法的使用. #!/usr/bin/python dict1 = {'Name': 'Zara', 'Age': 7}; dict2 = dict1.copy() print "New Dictinary : %s" % str(dict2) 当我们运行上面的程序,它会产生以下结果: New Dictinary

  • python实现linux下使用xcopy的方法

    本文实例讲述了python实现linux下使用xcopy的方法.分享给大家供大家参考.具体如下: 这个python函数模仿windows下的xcopy命令编写,可以用在linux下 #!/usr/bin/python # -*- coding: UTF-8 -*- """ xcopy for Linux... Use: ______________________________________________________________________________

  • python3 深浅copy对比详解

    一.赋值对比 1.列表 l1 = [1,2,3] l2 = l1 l1.append('a') print(l1,l2) #[1, 2, 3, 'a'] [1, 2, 3, 'a'] print(id(l1),id(l2)) #43499848 43499848 #可以看到两个列表的值以及id值相同,对应的是同一个内存地址 2.字典 dic = {'name':'barry'} dic1 = dic dic['age'] = 18 print(dic,dic1) #{'name': 'barry

  • python中copy()与deepcopy()的区别小结

    前言 copy()与deepcopy()之间的区分必须要涉及到python对于数据的存储方式. 深复制被复制对象完全再复制一遍作为独立的新个体单独存在.所以改变原有被复制对象不会对已经复制出来的新对象产生影响. 浅复制并不会产生一个独立的对象单独存在,他只是将原有的数据块打上一个新标签,所以当其中一个标签被改变的时候,数据块就会发生变化,另一个标签也会随之改变. import copy origin = [1, 2, [3, 4]] #origin 里边有三个元素:1, 2,[3, 4] cop

  • 浅谈python中copy和deepcopy中的区别

    在下是个编程爱好者,最近将魔爪伸向了Python编程.....遇到copy和deepcopy感到很困惑,现在针对这两个方法进行区分,一种是浅复制(copy),一种是深度复制(deepcopy). 首先说一下deepcopy,所谓的深度复制,在这里我理解的是完全复制然后变成一个新的对象,复制的对象和被复制的对象没有任何关系,彼此之间无论怎么改变都相互不影响. 然后说一下copy,在这里我分为两类来说,一种是字典数据类型的copy函数,一种是copy包的copy函数. 一.字典数据类型的copy函数

  • python 中赋值,深拷贝,浅拷贝的区别

    目录 一.赋值实例 二.浅拷贝实例 三.深拷贝实例 赋值:其实就是对象的引用(相当于取别名). 浅拷贝(copy):拷贝父对象,不会拷贝对象内部的子对象,会引用子对象. 深拷贝(deepcopy): copy 模块的 deepcopy 方法,完全拷贝了父对象及其子对象. 一.赋值实例 # a这个大列表是一个父对象,里面的小列表是a的一个子对象 a = [1, 2, 3, ["a", "b"]] # 赋值实例 b = a print("a:", a

  • Python中re模块的元字符使用小结

    目录 类别1:匹配单个字符的元字符 方括号( [] ) 字符集 点 ( . ) 通配符 \w 和 \W 单词字符匹配 \d 和 \D 字符十进制数字匹配 \s 和 \S 字符空格匹配 混合使用 \w, \W, \d, \D, \s, 和\S 类别2:转义元字符 反斜杠 ( \ ) 转义元字符 类别3:锚点 $ 和\Z 字符串的结尾匹配项 \b 和 \B 单词匹配 类别4:量词 * 匹配前面的子表达式零次或多次 + 匹配前面的子表达式一次或多次 ? 匹配前面的子表达式零次或一次 .*?.+?.??

  • 基于python中staticmethod和classmethod的区别(详解)

    例子 class A(object): def foo(self,x): print "executing foo(%s,%s)"%(self,x) @classmethod def class_foo(cls,x): print "executing class_foo(%s,%s)"%(cls,x) @staticmethod def static_foo(x): print "executing static_foo(%s)"%x a=A(

  • python中import reload __import__的区别详解

    import 作用:导入/引入一个python标准模块,其中包括.py文件.带有__init__.py文件的目录(自定义模块). import module_name[,module1,...] from module import *|child[,child1,...] 注意:多次重复使用import语句时,不会重新加载被指定的模块,只是把对该模块的内存地址给引用到本地变量环境. 实例: pythontab.py #!/usr/bin/env python #encoding: utf-8

  • Python中关键字is与==的区别简述

    本文以简单示例分析了python中关键字is与 ==的区别,供大家参考一下. 首先说明一下Python学习中几个相关的小知识点. Python中的对象包含三要素:id.type.value 其中:id用来唯一标识一个对象,type标识对象的类型,value是对象的值 is判断的是a对象是否就是b对象,是通过id来判断的 ==判断的是a对象的值是否和b对象的值相等,是通过value来判断的 具体示例如下: >>> a=100 >>> b=100.0 >>>

  • Python中is与==判断的区别

    在 Python 中,比较两个对象(变量)是否相等,可以用 "is" 和 "==" 操作,但它俩有什么区别?什么时候用 "is",什么时候用 "==" ?在面试时,发现不少候选人很难把这两者完全说清楚,因此在这篇文章中,「Python之禅」将对二者进行深入浅出的对比介绍. 先举个例子 小黄最近手头非常宽裕,花重金购买了一辆 P90D 特斯拉,我们暂且给这车取名叫 "小P" ,这辆车和隔壁老王家的车(车名叫

  • Python中元组,列表,字典的区别

    Python中,有3种内建的数据结构:列表.元组和字典. 1.列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目.列表中的项目.列表中的项目应该包括在方括号中,这样python就知道你是在指明一个列表.一旦你创建了一个列表,你就可以添加,删除,或者是搜索列表中的项目.由于你可以增加或删除项目,我们说列表是可变的数据类型,即这种类型是可以被改变的,并且列表是可以嵌套的. 实例: #coding=utf-8 animalslist=['fox','tiger','ra

  • Python中进程和线程的区别详解

    Num01–>线程 线程是操作系统中能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位. 一个线程指的是进程中一个单一顺序的控制流. 一个进程中可以并发多条线程,每条线程并行执行不同的任务. Num02–>进程 进程就是一个程序在一个数据集上的一次动态执行过程. 进程有以下三部分组成: 1,程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成. 2,数据集:数据集则是程序在执行过程中需要的资源,比如图片.音视频.文件等. 3,进程控制块:进程控制块是用来记录进程的外部

随机推荐