浅谈Java消息队列总结篇(ActiveMQ、RabbitMQ、ZeroMQ、Kafka)

一、消息队列概述

消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构。目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ。

二、消息队列应用场景

以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。

2.1异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种 1.串行的方式;2.并行方式

a、串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。

b、并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。

因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)

小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。

2.2应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:

传统模式的缺点:假如库存系统无法访问,则订单减库存将失败,从而导致订单失败,订单系统与库存系统耦合

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功

库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作

假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦

2.3流量削峰

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

a、可以控制活动的人数

b、可以缓解短时间内高流量压垮应用

用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面。

秒杀业务根据消息队列中的请求信息,再做后续处理。

2.4日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:

日志采集客户端,负责日志数据采集,定时写受写入Kafka队列。

Kafka消息队列,负责日志数据的接收,存储和转发。

日志处理应用:订阅并消费kafka队列中的日志数据。

2.5消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。

点对点通讯:

客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:

客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

三、消息中间件示例

3.1电商系统

消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。

应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)

扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。

消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。

3.2日志收集系统

分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。

Zookeeper注册中心,提出负载均衡和地址查×××

日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列

Kafka集群:接收,路由,存储,转发等消息处理

Storm集群:与OtherApp处于同一级别,采用拉的方式消费队列中的数据

MQ选型对比文档

综合选择RabbitMq

Kafka是linkedin开源的MQ系统,主要特点是基于Pull的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输,0.8开始支持复制,不支持事务,适合产生大量数据的互联网服务的数据收集业务。

RabbitMQ是使用Erlang语言开发的开源消息队列系统,基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、安全。AMQP协议更多用在企业系统内,对数据一致性、稳定性和可靠性要求很高的场景,对性能和吞吐量的要求还在其次。

RocketMQ是阿里开源的消息中间件,它是纯Java开发,具有高吞吐量、高可用性、适合大规模分布式系统应用的特点。RocketMQ思路起源于Kafka,但并不是Kafka的一个Copy,它对消息的可靠传输及事务性做了优化,目前在阿里集团被广泛应用于交易、充值、流计算、消息推送、日志流式处理、binglog分发等场景。

ZeroMQ只是一个网络编程的Pattern库,将常见的网络请求形式(分组管理,链接管理,发布订阅等)模式化、组件化,简而言之socket之上、MQ之下。对于MQ来说,网络传输只是它的一部分,更多需要处理的是消息存储、路由、Broker服务发现和查找、事务、消费模式(ack、重投等)、集群服务等。

RabbitMQ/Kafka/ZeroMQ 都能提供消息队列服务,但有很大的区别。

在面向服务架构中通过消息代理(比如 RabbitMQ / Kafka等),使用生产者-消费者模式在服务间进行异步通信是一种比较好的思想。

因为服务间依赖由强耦合变成了松耦合。消息代理都会提供持久化机制,在消费者负载高或者掉线的情况下会把消息保存起来,不会丢失。就是说生产者和消费者不需要同时在线,这是传统的请求-应答模式比较难做到的,需要一个中间件来专门做这件事。其次消息代理可以根据消息本身做简单的路由策略,消费者可以根据这个来做负载均衡,业务分离等。

缺点也有,就是需要额外搭建消息代理集群(但优点是大于缺点的 ) 。

ZeroMQ 和 RabbitMQ/Kafka 不同,它只是一个异步消息库,在套接字的基础上提供了类似于消息代理的机制。使用 ZeroMQ 的话,需要对自己的业务代码进行改造,不利于服务解耦。

RabbitMQ 支持 AMQP(二进制),STOMP(文本),MQTT(二进制),HTTP(里面包装其他协议)等协议。Kafka 使用自己的协议。

Kafka 自身服务和消费者都需要依赖 Zookeeper。

RabbitMQ 在有大量消息堆积的情况下性能会下降,Kafka不会。毕竟AMQP设计的初衷不是用来持久化海量消息的,而Kafka一开始是用来处理海量日志的。

总的来说,RabbitMQ 和 Kafka 都是十分优秀的分布式的消息代理服务,只要合理部署,不作,基本上可以满足生产条件下的任何需求。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Java利用Redis实现消息队列的示例代码

    本文介绍了Java利用Redis实现消息队列的示例代码,分享给大家,具体如下: 应用场景 为什么要用redis? 二进制存储.java序列化传输.IO连接数高.连接频繁 一.序列化 这里编写了一个java序列化的工具,主要是将对象转化为byte数组,和根据byte数组反序列化成java对象; 主要是用到了ByteArrayOutputStream和ByteArrayInputStream; 注意:每个需要序列化的对象都要实现Serializable接口; 其代码如下: package Utils

  • Java中消息队列任务的平滑关闭详解

    前言 消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构.目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ 消息队列应用场景 消息队列在实际应用中常用的使用场景:异步处理,应用解耦,流量削锋和消息通讯四个场景. 本文主要给大家介绍的是关于Java中消息队列任务平滑关闭的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 1.问题背

  • java多线程消息队列的实现代码

    本文介绍了java多线程消息队列的实现代码,分享给大家,希望对大家有帮助,顺便也自己留个笔记 1.定义一个队列缓存池: //static修饰的成员变量和成员方法独立于该类的任何对象.也就是说,它不依赖类特定的实例,被类的所有实例共享. private static List<Queue> queueCache = new LinkedList<Queue>(); 2.定义队列缓冲池最大消息数,如果达到该值,那么队列检入将等待检出低于该值时继续进行. private Integer

  • java实现消息队列的两种方式(小结)

    实现消息队列的两种方式 Apache ActiveMQ官方实例发送消息 直接在Apache官网http://activemq.apache.org/download-archives.html下载ActiveMQ源码 下载解压后拿到java代码实例 然后倒入IDE 如下: 请认真阅读readme.md文件,大致意思就是把项目打成两个jar包,然后启动服务,然后同时运行打的两个jar包,然后就能看到具体的调用信息.打jar包时直接利用maven打就行了,不用修改代码. 启动服务: 利用Spring

  • Java消息队列的简单实现代码

    今天看到我们的招聘信息有对消息队列有要求,然后就思索了一翻,网上一搜一大堆. 我可以举个小例子先说明应用场景 假设你的服务器每分钟的处理量为200个,但客户端再峰值的时候可能一分钟会发1000个消息给你,这时候你就可以把他做成队列,然后按正常有序的处理,先进后出(LIFO),先进先出(FIFO)可根据自己的情况进行定夺 stack  先进后出(LIFO)--------Java 对应的类 Stack 队列 先进先出(FIFO)--------java对应的类Queue 这两种都可用Linkedl

  • 详解Java消息队列-Spring整合ActiveMq

    1.概述 首先和大家一起回顾一下Java 消息服务,在我之前的博客<Java消息队列-JMS概述>中,我为大家分析了: 1.消息服务:一个中间件,用于解决两个活多个程序之间的耦合,底层由Java 实现. 2.优势:异步.可靠 3.消息模型:点对点,发布/订阅 4.JMS中的对象 然后在另一篇博客<Java消息队列-ActiveMq实战>中,和大家一起从0到1的开启了一个ActiveMq 的项目,在项目开发的过程中,我们对ActiveMq有了一定的了解: 1.多种语言和协议编写客户端

  • 浅谈使用java实现阿里云消息队列简单封装

    一.前言 最近公司有使用阿里云消息队列的需求,为了更加方便使用,本人用了几天时间将消息队列封装成api调用方式以方便内部系统的调用,现在已经完成,特此记录其中过程和使用到的相关技术,与君共勉. 现在阿里云提供了两种消息服务:mns服务和ons服务,其中我认为mns是简化版的ons,而且mns的消息消费需要自定义轮询策略的,相比之下,ons的发布与订阅模式功能更加强大(比如相对于mns,ons提供了消息追踪.日志.监控等功能),其api使用起来更加方便,而且听闻阿里内部以后不再对mns进行新的开发

  • 浅谈Java消息队列总结篇(ActiveMQ、RabbitMQ、ZeroMQ、Kafka)

    一.消息队列概述 消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构.目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ. 二.消息队列应用场景 以下介绍消息队列在实际应用中常用的使用场景.异步处理,应用解耦,流量削锋和消息通讯四个场景. 2.1异步处理 场景说明:用户注册后,需要发注册邮件和注册短信.传统的做法有两种 1.串行的方式;2.并行方式 a.串

  • 浅谈Java finally语句到底是在return之前还是之后执行(必看篇)

    网上有很多人探讨Java中异常捕获机制try...catch...finally块中的finally语句是不是一定会被执行?很多人都说不是,当然他们的回答是正确的,经过我试验,至少有两种情况下finally语句是不会被执行的: (1)try语句没有被执行到,如在try语句之前就返回了,这样finally语句就不会执行,这也说明了finally语句被执行的必要而非充分条件是:相应的try语句一定被执行到. (2)在try块中有System.exit(0);这样的语句,System.exit(0);

  • 浅谈Java线程间通信之wait/notify

    Java中的wait/notify/notifyAll可用来实现线程间通信,是Object类的方法,这三个方法都是native方法,是平台相关的,常用来实现生产者/消费者模式.先来我们来看下相关定义: wait() :调用该方法的线程进入WATTING状态,只有等待另外线程的通知或中断才会返回,调用wait()方法后,会释放对象的锁. wait(long):超时等待最多long毫秒,如果没有通知就超时返回. notify() :通知一个在对象上等待的线程,使其从wait()方法返回,而返回的前提

  • 浅谈Java异常的Exception e中的egetMessage()和toString()方法的区别

    Exception e中e的getMessage()和toString()方法的区别: 示例代码1: public class TestInfo { private static String str =null; public static void main(String[] args) { System.out.println("test exception"); try { if(str.equals("name")){ System.out.println

  • 浅谈Java自定义注解和运行时靠反射获取注解

    java自定义注解 Java注解是附加在代码中的一些元信息,用于一些工具在编译.运行时进行解析和使用,起到说明.配置的功能. 注解不会也不能影响代码的实际逻辑,仅仅起到辅助性的作用.包含在 java.lang.annotation 包中. 1.元注解 元注解是指注解的注解.包括  @Retention @Target @Document @Inherited四种. 1.1.@Retention: 定义注解的保留策略 @Retention(RetentionPolicy.SOURCE) //注解仅

  • 浅谈Java中的四种引用方式的区别

    强引用.软引用.弱引用.虚引用的概念 强引用(StrongReference) 强引用就是指在程序代码之中普遍存在的,比如下面这段代码中的object和str都是强引用: Object object = new Object(); String str = "hello"; 只要某个对象有强引用与之关联,JVM必定不会回收这个对象,即使在内存不足的情况下,JVM宁愿抛出OutOfMemory错误也不会回收这种对象. 比如下面这段代码: public class Main { publi

  • 浅谈Java中常用数据结构的实现类 Collection和Map

    线性表,链表,哈希表是常用的数据结构,在进行Java开发时,JDK已经为我们提供了一系列相应的类来实现基本的数据结构.这些类均在java.util包中.本文试图通过简单的描述,向读者阐述各个类的作用以及如何正确使用这些类. Collection ├List │├LinkedList │├ArrayList │└Vector │ └Stack └Set Map ├Hashtable ├HashMap └WeakHashMap Collection接口 Collection是最基本的集合接口,一个C

  • 浅谈java常用的几种线程池比较

    1. 为什么使用线程池 诸如 Web 服务器.数据库服务器.文件服务器或邮件服务器之类的许多服务器应用程序都面向处理来自某些远程来源的大量短小的任务.请求以某种方式到达服务器,这种方式可能是通过网络协议(例如 HTTP.FTP 或 POP).通过 JMS 队列或者可能通过轮询数据库.不管请求如何到达,服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的. 构建服务器应用程序的一个简单模型是:每当一个请求到达就创建一个新线程,然后在新线程中为请求服务.实际上对于原型开发这

  • 浅谈java线程中生产者与消费者的问题

    一.概念 生产者与消费者问题是一个金典的多线程协作的问题.生产者负责生产产品,并将产品存放到仓库:消费者从仓库中获取产品并消费.当仓库满时,生产者必须停止生产,直到仓库有位置存放产品:当仓库空时,消费者必须停止消费,直到仓库中有产品. 解决生产者/消费者问题主要用到如下几个技术:1.用线程模拟生产者,在run方法中不断地往仓库中存放产品.2.用线程模拟消费者,在run方法中不断地从仓库中获取产品.3  . 仓库类保存产品,当产品数量为0时,调用wait方法,使得当前消费者线程进入等待状态,当有新

随机推荐