详解基于python的多张不同宽高图片拼接成大图

半年前写过一篇将多张图片拼接成大图的博客,是讲的把所有图片先转换为256×256的图片后再进行拼接,今天看到一个朋友的评论说如何拼接非正方形图片,如47×57,之前有个朋友也问过这个,我当时理解错了,以为是要把不同尺寸的照片如32×45、56×75等拼接成大图,当时还纳闷,那不是很难看吗,还得填充非图片元素,emmm,只怪当年太天真。。

于是乎搞了下非方形图片的拼接,上代码:

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import PIL.Image as Image

import os

IMAGES_PATH = 'D:\Mafengwo\photo\五月坦桑的暖风,非洲原野的呼唤\\' # 图片集地址

IMAGES_FORMAT = ['.jpg', '.JPG'] # 图片格式

IMAGE_SIZE_W = 47 # 每张小图片的宽
IMAGE_SIZE_H = 57 # 每张小图片的高

IMAGE_ROW = 5 # 图片间隔,也就是合并成一张图后,一共有几行

IMAGE_COLUMN = 4 # 图片间隔,也就是合并成一张图后,一共有几列

IMAGE_SAVE_PATH = 'final.jpg' # 图片转换后的地址

# 获取图片集地址下的所有图片名称

image_names = [name for name in os.listdir(IMAGES_PATH) for item in IMAGES_FORMAT if
        os.path.splitext(name)[1] == item]

# 简单的对于参数的设定和实际图片集的大小进行数量判断
if len(image_names) != IMAGE_ROW * IMAGE_COLUMN:
  raise ValueError("合成图片的参数和要求的数量不能匹配!")

# 定义图像拼接函数
def image_compose():
  to_image = Image.new('RGB', (IMAGE_COLUMN * IMAGE_SIZE_W, IMAGE_ROW * IMAGE_SIZE_H)) # 创建一个新图

  # 循环遍历,把每张图片按顺序粘贴到对应位置上

  for y in range(1, IMAGE_ROW + 1):

    for x in range(1, IMAGE_COLUMN + 1):
      from_image = Image.open(IMAGES_PATH + image_names[IMAGE_COLUMN * (y - 1) + x - 1]).resize(

        (IMAGE_SIZE_W, IMAGE_SIZE_H), Image.ANTIALIAS)#重塑(统一)照片的大小

      to_image.paste(from_image, ((x - 1) * IMAGE_SIZE_W, (y - 1) * IMAGE_SIZE_H))
      # im.paste(image, position)---粘贴image到im的position(左上角)位置。

  return to_image.save(IMAGE_SAVE_PATH) # 保存新图

image_compose() # 调用函数

对比之前的博客,没有改动太多,只是太久没看了,又梳理了一遍,把之前的方形图片的边长IMAGE_SIZE拆分成了矩形的长和宽,当然习惯称之为高和宽

这里需要注意的就是下面两处用到IMAGE_SIZE_W和IMAGE_SIZE_H的地方,注释已经说清楚了,我们先是把需要拼接的各种尺寸的图片统一塑形为47×57大小的图片,然后依次粘贴到我们创建的新图中,这里的paste方法中位置指的是图片的左上角,从该处粘贴一张IMAGE_SIZE_W×IMAGE_SIZE_H大小的图片,他这个顺序就是从第一行开始依次粘贴,只不过位置是从0开始的,可以理解成一次粘贴到(0,0),(0,1),(0,2)…………(1,0),(1,1)…………位置上,区别的就是我们这里粘贴的不是一个点而是一张有宽高的图片,所以第一张图片粘贴位置是(0,0),第二张是(IMAGE_SIZE_W,0),第三张是(IMAGE_SIZE_W*2,0)就这么先搞定第一行再走第二行,一直这么下去。。

还是原来的图片,看下不同的效果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现拼接多张图片的方法

    本文实例讲述了Python实现拼接多张图片的方法.分享给大家供大家参考.具体分析如下:   这里所述计划实现如下操作:   ① 用Latex写原始博文,生成PDF文档; ② 将PDF转成高清的PNG格式的图片; ③ 将多个PNG格式的图片合并成一大张图片; ④ 将最终的大图片直接上传到博文编辑器中 好了,如果将PDF文档转换成其他的图片格式呢?我建议windowns下可用Adobe  Acrobat X Pro软件完成这个工作,操作步骤如下面两图所示.注意在图二中一定要自己指定一个分辨率,不用用

  • python实现多张图片拼接成大图

    本文实例为大家分享了python实现多张图片拼接成大图的具体代码,供大家参考,具体内容如下 上次爬取了马蜂窝的游记图片,并解决了PIL模块的导入问题,现在直奔主题吧: import PIL.Image as Image import os IMAGES_PATH = 'D:\Mafengwo\photo\五月坦桑的暖风,非洲原野的呼唤\\' # 图片集地址 IMAGES_FORMAT = ['.jpg', '.JPG'] # 图片格式 IMAGE_SIZE = 256 # 每张小图片的大小 IM

  • Python实现图片拼接的代码

    具体代码如下所示: import os from PIL import Image UNIT_SIZE = 220 # the size of image save_path = '/root/group-dia/zxb/Code-/lip-CycleGAN-and-pix2pix-master/checkpoints/lip_cyclegan_6.0/web/result/out' path = "/root/group-dia/zxb/Code-/lip-CycleGAN-and-pix2p

  • Python 使用PIL numpy 实现拼接图片的示例

    python纵向合并任意多个图片,files是要拼接的文件list # -*- coding:utf-8 -*- def mergeReport(files): from PIL import Image import numpy as np baseimg=Image.open(files[0]) sz = baseimg.size basemat=np.atleast_2d(baseimg) for file in files[1:]: im=Image.open(file) #resize

  • python实现两张图片拼接为一张图片并保存

    本文实例为大家分享了python实现两张图片拼接为一张图片并保存的具体代码,供大家参考,具体内容如下 这里主要用Python扩展库pillow中Image对象的paste()方法把两张图片拼接起来 from os import listdir from PIL import Image def pinjie(): # 获取当前文件夹中所有JPG图像 im_list = [Image.open(fn) for fn in listdir() if fn.endswith('.jpg')] # 图片

  • 详解基于python的多张不同宽高图片拼接成大图

    半年前写过一篇将多张图片拼接成大图的博客,是讲的把所有图片先转换为256×256的图片后再进行拼接,今天看到一个朋友的评论说如何拼接非正方形图片,如47×57,之前有个朋友也问过这个,我当时理解错了,以为是要把不同尺寸的照片如32×45.56×75等拼接成大图,当时还纳闷,那不是很难看吗,还得填充非图片元素,emmm,只怪当年太天真.. 于是乎搞了下非方形图片的拼接,上代码: #!/usr/bin/env python # -*- coding:utf-8 -*- import PIL.Imag

  • 详解基于python的全局与局部序列比对的实现(DNA)

    程序能实现什么 a.完成gap值的自定义输入以及两条需比对序列的输入 b.完成得分矩阵的计算及输出 c.输出序列比对结果 d.使用matplotlib对得分矩阵路径的绘制 一.实现步骤 1.用户输入步骤 a.输入自定义的gap值 b.输入需要比对的碱基序列1(A,T,C,G)换行表示输入完成 b.输入需要比对的碱基序列2(A,T,C,G)换行表示输入完成 输入(示例): 2.代码实现步骤 1.获取到用户输入的gap,s以及t 2.调用构建得分矩阵函数,得到得分矩阵以及方向矩阵 3.将得到的得分矩

  • 详解基于python的图像Gabor变换及特征提取

    1.前言 在深度学习出来之前,图像识别领域北有"Gabor帮主",南有"SIFT慕容小哥".目前,深度学习技术可以利用CNN网络和大数据样本搞事情,从而取替"Gabor帮主"和"SIFT慕容小哥"的江湖地位.但,在没有大数据和算力支撑的"乡村小镇"地带,或是对付"刁民小辈","Gabor帮主"可以大显身手,具有不可撼动的地位.IT武林中,有基于C++和OpenCV,或

  • 基于YUV 数据格式详解及python实现方式

    YUV 数据格式概览 YUV 的原理是把亮度与色度分离,使用 Y.U.V 分别表示亮度,以及蓝色通道与亮度的差值和红色通道与亮度的差值.其中 Y 信号分量除了表示亮度 (luma) 信号外,还含有较多的绿色通道量,单纯的 Y 分量可以显示出完整的黑白图像.U.V 分量分别表示蓝 (blue).红 (red) 分量信号,它们只含有色彩 (chrominance/color) 信息,所以 YUV 也称为 YCbCr,C 意思可以理解为 (component 或者 color). 维基百科上的 RGB

  • 详解基于Android的Appium+Python自动化脚本编写

    1.Appium Appium是一个开源测试自动化框架,可用于原生,混合和移动Web应用程序测试, 它使用WebDriver协议驱动iOS,Android和Windows应用程序. 通过Appium,我们可以模拟点击和屏幕的滑动,可以获取元素的id和classname,还可以根据操作生成相关的脚本代码. 下面开始Appium的配置. appPackage和APPActivity的获取 任意下载一个app 解压 但是解压出来的xml文件可能是乱码,所以我们需要反编译文件. 逆向AndroidMan

  • 详解基于Facecognition+Opencv快速搭建人脸识别及跟踪应用

    人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁.刷脸打卡.App解锁.刷脸支付.口罩检测........ 作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~ Facecognition人脸识别原理大体可分为: 1.通过hog算子定位人脸,也可以用cnn模型,但本文没试过: 2.Dlib有专门的函数和模型,实现人脸68个特征点的定位.通过图像的几何变换(仿射.旋转.缩放),使各个特征点对齐(将眼睛.嘴等部位移

  • 详解用Python进行时间序列预测的7种方法

    数据准备 数据集(JetRail高铁的乘客数量)下载. 假设要解决一个时序问题:根据过往两年的数据(2012 年 8 月至 2014 年 8月),需要用这些数据预测接下来 7 个月的乘客数量. import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('train.csv') df.head() df.shape 依照上面的代码,我们获得了 2012-2014 年两年每个小时的乘

  • 详解基于Jupyter notebooks采用sklearn库实现多元回归方程编程

    一.导入excel文件和相关库 import pandas; import matplotlib; from pandas.tools.plotting import scatter_matrix; data = pandas.read_csv("D:\\面积距离车站.csv",engine='python',encoding='utf-8') 显示文件大小 data.shape data 二.绘制多个变量两两之间的散点图:scatter_matrix()方法 #绘制多个变量两两之间的

  • 详解基于Mybatis-plus多租户实现方案

    一.引言 小编先解释一下什么叫多租户,什么场景下使用多租户. 多租户是一种软件架构技术,在多用户的环境下,共有同一套系统,并且要注意数据之间的隔离性. 举个实际例子:小编曾经开发过一套支付宝程序,这套程序应用在不同的小程序上,当使用者访问不同,并且进入相对应的小程序页面,小程序则会把用户相关数据传输到小编这里.在传输的时候需要带上小程序标识(租户ID),以便小编将数据进行隔离. 当不同的租户使用同一套程序,这里就需要考虑一个数据隔离的情况. 数据隔离有三种方案: 1.独立数据库:简单来说就是一个

  • 详解基于Scrapy的IP代理池搭建

    一.为什么要搭建爬虫代理池 在众多的网站防爬措施中,有一种是根据ip的访问频率进行限制,即在某一时间段内,当某个ip的访问次数达到一定的阀值时,该ip就会被拉黑.在一段时间内禁止访问. 应对的方法有两种: 1. 降低爬虫的爬取频率,避免IP被限制访问,缺点显而易见:会大大降低爬取的效率. 2. 搭建一个IP代理池,使用不同的IP轮流进行爬取. 二.搭建思路 1.从代理网站(如:西刺代理.快代理.云代理.无忧代理)爬取代理IP: 2.验证代理IP的可用性(使用代理IP去请求指定URL,根据响应验证

随机推荐