Opengl ES之FBO帧缓冲对象使用详解

目录
  • FBO介绍
  • 如何使用FBO
    • FBOOpengl.h
    • FBOOpengl.cpp

FBO介绍

FBO帧缓冲对象,它的主要作用一般就是用作离屏渲染,例如做Camera相机图像采集进行后期处理时就可能会用到FBO。假如相机出图的是OES纹理,为了方便后期处理,
一般先将OES纹理通过FBO转换成普通的2D纹理,然后再通过FBO等增加美颜等其他各种特效滤镜,最后将FBO一路流送进编码器进行编码,另外一路渲染到屏幕上进行预览显示。

FBO总结起来就是可以暂时将未处理完的帧不直接渲染到屏幕上,而是渲染到离屏Buffer中缓存起来,在恰当的时机再取出来渲染到屏幕。

FBO(Frame Buffer Object)帧缓冲对象提供了与颜色缓冲区(color buffer)、深度缓冲区(depth buffer)和模版缓冲区(stencil buffer) ,但并不会直接为这些缓冲区分配空间,而只是为这些缓冲区提供一个或多个挂接点。我们需要分别为各个缓冲区创建对象,申请空间,然后挂接到相应的挂接点上。

从上图可以看出FBO中包含了:

  • 多个颜色附着点(GL_COLOR_ATTACHMENT0、GL_COLOR_ATTACHMENT1...)
  • 一个深度附着点(GL_DEPTH_ATTACHMENT)
  • 一个模板附着点(GL_STENCIL_ATTACHMENT)

所谓的颜色附着(纹理附着)就是用于将颜色渲染到纹理中去的意思。后面我们主要介绍FBO的颜色附着。

如何使用FBO

  • 使用函数glGenFramebuffers生成一个FBO对象,保存对象ID。
  • 使用函数glBindFramebuffer绑定FBO。
  • 使用函数glFramebufferTexture2D关联纹理和FBO,并执行渲染步骤。后续如果需要使用FBO的效果时只需要操作与FBO绑定的纹理即可。
  • 使用函数glBindFramebuffer解绑FBO,一般在Opengl中ID参数传递0就是解绑。
  • 使用函数glDeleteFramebuffers删除FBO。

当挂接完成之后,我们在执行FBO下面的操作之前,可以检查一下FBO的状态,使用函数GLenum glCheckFramebufferStatus(GLenum target)检查。

本着学以致用的原则,我们将结合之前的文章,例如纹理贴图、VBO/VAO、EBO等相关知识点,使用这些知识点结合FBO绘制做一个实践的例子:首先将纹理渲染到FBO上去,然后再将FBO的纹理渲染到屏幕上。

插个话。。。总有人盗用不贴原文链接,看看是谁。。。

首先上代码,然后我们挑重要的稍微解读一下:

FBOOpengl.h

class FBOOpengl:public BaseOpengl{
public:
    FBOOpengl();
    void onFboDraw();
    virtual ~FBOOpengl();
    // override要么就都写,要么就都不写,不要一个虚函数写override,而另外一个虚函数不写override,不然可能编译不过
    virtual void onDraw() override;
    virtual void setPixel(void *data, int width, int height, int length) override;
private:
    void fboPrepare();
    GLint positionHandle{-1};
    GLint textureHandle{-1};
    GLuint vbo{0};
    GLuint vao{0};
    GLuint ebo{0};
    // 本身图像纹理id
    GLuint imageTextureId{0};
    // fbo纹理id
    GLuint fboTextureId{0};
    GLint textureSampler{-1};
    GLuint fboId{0};
    // 用于fbo的vbo和vao  也可以用数组的形式,这里为了方便理解先独立开来
    GLuint fboVbo{0};
    GLuint fboVao{0};
    int imageWidth{0};
    int imageHeight{0};
};

注意:override作为现代C++的一个关键字,使用的时候需要注意一点,要么就整个类的虚函数都用,要么整个类的虚函数都不用,不要一个虚函数用override修饰,另外一个虚函数又不用override关键字修饰,不然很有可能会编译不过的。

在FBOOpengl中为了区分屏幕渲染和FBO离屏渲染,我们声明了两套VAO和VBO。

FBOOpengl.cpp

#include "FBOOpengl.h"
#include "../utils/Log.h"
// 顶点着色器
static const char *ver = "#version 300 es\n"
                         "in vec4 aPosition;\n"
                         "in vec2 aTexCoord;\n"
                         "out vec2 TexCoord;\n"
                         "void main() {\n"
                         "  TexCoord = aTexCoord;\n"
                         "  gl_Position = aPosition;\n"
                         "}";
// 片元着色器
static const char *fragment = "#version 300 es\n"
                              "precision mediump float;\n"
                              "out vec4 FragColor;\n"
                              "in vec2 TexCoord;\n"
                              "uniform sampler2D ourTexture;\n"
                              "void main()\n"
                              "{\n"
                              "    FragColor = texture(ourTexture, TexCoord);\n"
                              "}";
const static GLfloat VERTICES_AND_TEXTURE[] = {
        0.5f, -0.5f, // 右下
        // 纹理坐标
        1.0f,1.0f,
        0.5f, 0.5f, // 右上
        // 纹理坐标
        1.0f,0.0f,
        -0.5f, -0.5f, // 左下
        // 纹理坐标
        0.0f,1.0f,
        -0.5f, 0.5f, // 左上
        // 纹理坐标
        0.0f,0.0f
};
// 纹理坐标原点在图片的左上角    又是倒置的?什么鬼?疑惑吧?
//const static GLfloat FBO_VERTICES_AND_TEXTURE[] = {
//        1.0f, -1.0f, // 右下
//        // 纹理坐标
//        1.0f,1.0f,
//        1.0f, 1.0f, // 右上
//        // 纹理坐标
//        1.0f,0.0f,
//        -1.0f, -1.0f, // 左下
//        // 纹理坐标
//        0.0f,1.0f,
//        -1.0f, 1.0f, // 左上
//        // 纹理坐标
//        0.0f,0.0f
//};
// 真正的纹理坐标在图片的左下角
const static GLfloat FBO_VERTICES_AND_TEXTURE[] = {
        1.0f, -1.0f, // 右下
        // 纹理坐标
        1.0f,0.0f,
        1.0f, 1.0f, // 右上
        // 纹理坐标
        1.0f,1.0f,
        -1.0f, -1.0f, // 左下
        // 纹理坐标
        0.0f,0.0f,
        -1.0f, 1.0f, // 左上
        // 纹理坐标
        0.0f,1.0f
};
// 使用byte类型比使用short或者int类型节约内存
const static uint8_t indices[] = {
        // 注意索引从0开始!
        // 此例的索引(0,1,2,3)就是顶点数组vertices的下标,
        // 这样可以由下标代表顶点组合成矩形
        0, 1, 2, // 第一个三角形
        1, 2, 3  // 第二个三角形
};
FBOOpengl::FBOOpengl() {
    initGlProgram(ver,fragment);
    positionHandle = glGetAttribLocation(program,"aPosition");
    textureHandle = glGetAttribLocation(program,"aTexCoord");
    textureSampler = glGetUniformLocation(program,"ourTexture");
    LOGD("program:%d",program);
    LOGD("positionHandle:%d",positionHandle);
    LOGD("textureHandle:%d",textureHandle);
    LOGD("textureSample:%d",textureSampler);
    // VAO
    glGenVertexArrays(1, &vao);
    glBindVertexArray(vao);
    // vbo
    glGenBuffers(1, &vbo);
    glBindBuffer(GL_ARRAY_BUFFER, vbo);
    glBufferData(GL_ARRAY_BUFFER, sizeof(VERTICES_AND_TEXTURE), VERTICES_AND_TEXTURE, GL_STATIC_DRAW);
    // stride 步长 每个顶点坐标之间相隔4个数据点,数据类型是float
    glVertexAttribPointer(positionHandle, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (void *) 0);
    // 启用顶点数据
    glEnableVertexAttribArray(positionHandle);
    // stride 步长 每个颜色坐标之间相隔4个数据点,数据类型是float,颜色坐标索引从2开始
    glVertexAttribPointer(textureHandle, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float),
                          (void *) (2 * sizeof(float)));
    // 启用纹理坐标数组
    glEnableVertexAttribArray(textureHandle);
    // EBO
    glGenBuffers(1,&ebo);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,ebo);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER,sizeof(indices),indices,GL_STATIC_DRAW);
    // 这个顺序不能乱啊,先解除vao,再解除其他的,不然在绘制的时候可能会不起作用,需要重新glBindBuffer才生效
    // vao解除
    glBindVertexArray(0);
    // 解除绑定
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    // 解除绑定
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
    LOGD("program:%d", program);
    LOGD("positionHandle:%d", positionHandle);
    LOGD("colorHandle:%d", textureHandle);
}
void FBOOpengl::setPixel(void *data, int width, int height, int length) {
    LOGD("texture setPixel");
    imageWidth = width;
    imageHeight = height;
    glGenTextures(1, &imageTextureId);
    // 激活纹理,注意以下这个两句是搭配的,glActiveTexture激活的是那个纹理,就设置的sampler2D是那个
    // 默认是0,如果不是0的话,需要在onDraw的时候重新激活一下?
//    glActiveTexture(GL_TEXTURE0);
//    glUniform1i(textureSampler, 0);
// 例如,一样的
    glActiveTexture(GL_TEXTURE2);
    glUniform1i(textureSampler, 2);
    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, imageTextureId);
    // 为当前绑定的纹理对象设置环绕、过滤方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
    // 生成mip贴图
    glGenerateMipmap(GL_TEXTURE_2D);
    // 解绑定
    glBindTexture(GL_TEXTURE_2D, 0);
}
void FBOOpengl::fboPrepare(){
    // VAO
    glGenVertexArrays(1, &fboVao);
    glBindVertexArray(fboVao);
    // vbo
    glGenBuffers(1, &fboVbo);
    glBindBuffer(GL_ARRAY_BUFFER, fboVbo);
    glBufferData(GL_ARRAY_BUFFER, sizeof(FBO_VERTICES_AND_TEXTURE), FBO_VERTICES_AND_TEXTURE, GL_STATIC_DRAW);
    // stride 步长 每个顶点坐标之间相隔4个数据点,数据类型是float
    glVertexAttribPointer(positionHandle, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (void *) 0);
    // 启用顶点数据
    glEnableVertexAttribArray(positionHandle);
    // stride 步长 每个颜色坐标之间相隔4个数据点,数据类型是float,颜色坐标索引从2开始
    glVertexAttribPointer(textureHandle, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float),
                          (void *) (2 * sizeof(float)));
    // 启用纹理坐标数组
    glEnableVertexAttribArray(textureHandle);
    // EBO
    glGenBuffers(1,&ebo);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,ebo);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER,sizeof(indices),indices,GL_STATIC_DRAW);
    // 这个顺序不能乱啊,先解除vao,再解除其他的,不然在绘制的时候可能会不起作用,需要重新glBindBuffer才生效
    // vao解除
    glBindVertexArray(0);
    // 解除绑定
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    // 解除绑定
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
    glGenTextures(1, &fboTextureId);
    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, fboTextureId);
    // 为当前绑定的纹理对象设置环绕、过滤方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glBindTexture(GL_TEXTURE_2D, GL_NONE);
    glGenFramebuffers(1,&fboId);
    glBindFramebuffer(GL_FRAMEBUFFER,fboId);
    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D,fboTextureId);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fboTextureId, 0);
    // 这个纹理是多大的?
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageWidth, imageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
    // 检查FBO状态
    if (glCheckFramebufferStatus(GL_FRAMEBUFFER)!= GL_FRAMEBUFFER_COMPLETE) {
        LOGE("FBOSample::CreateFrameBufferObj glCheckFramebufferStatus status != GL_FRAMEBUFFER_COMPLETE");
    }
    // 解绑
    glBindTexture(GL_TEXTURE_2D, GL_NONE);
    glBindFramebuffer(GL_FRAMEBUFFER, GL_NONE);
}
void FBOOpengl::onFboDraw() {
    fboPrepare();
    glBindFramebuffer(GL_FRAMEBUFFER, fboId);
    // 主要这个的大小要与FBO绑定时的纹理的glTexImage2D 设置的大小一致呀
    glViewport(0,0,imageWidth,imageHeight);
     // FBO绘制
    // 清屏
    glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT);
    glUseProgram(program);
    // 激活纹理
    glActiveTexture(GL_TEXTURE1);
    glUniform1i(textureSampler, 1);
    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, imageTextureId);
    // VBO与VAO配合绘制
    // 使用vao
    glBindVertexArray(fboVao);
    // 使用EBO
// 使用byte类型节省内存
    glDrawElements(GL_TRIANGLES,6,GL_UNSIGNED_BYTE,(void *)0);
    glUseProgram(0);
    // vao解除绑定
    glBindVertexArray(0);
    if (nullptr != eglHelper) {
        eglHelper->swapBuffers();
    }
    glBindTexture(GL_TEXTURE_2D, 0);
    glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
void FBOOpengl::onDraw() {
    // 先在FBO离屏渲染
    onFboDraw();
    // 恢复绘制屏幕宽高
    glViewport(0,0,eglHelper->viewWidth,eglHelper->viewHeight);
    // 绘制到屏幕
    // 清屏
    glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT);
    glUseProgram(program);
    // 激活纹理
    glActiveTexture(GL_TEXTURE2);
    glUniform1i(textureSampler, 2);
    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, fboTextureId);
    // VBO与VAO配合绘制
    // 使用vao
    glBindVertexArray(vao);
    // 使用EBO
// 使用byte类型节省内存
    glDrawElements(GL_TRIANGLES,6,GL_UNSIGNED_BYTE,(void *)0);
    glUseProgram(0);
    // vao解除绑定
    glBindVertexArray(0);
    // 禁用顶点
    glDisableVertexAttribArray(positionHandle);
    if (nullptr != eglHelper) {
        eglHelper->swapBuffers();
    }
    glBindTexture(GL_TEXTURE_2D, 0);
}
FBOOpengl::~FBOOpengl() noexcept {
    glDeleteBuffers(1,&ebo);
    glDeleteBuffers(1,&vbo);
    glDeleteVertexArrays(1,&vao);
    // ... 删除其他,例如fbo等
}

按照之前Opengl ES之纹理贴图 一文所说的,在Opengl ES中进行纹理贴图时直接以图片的左上角为(0,0)原点进行贴图,以纠正纹理贴图倒置的问题,那么这次在绑定FBO之后之后我们就这么干,
使用以下的顶点坐标和纹理坐标:

// 纹理坐标原点在图片的左上角    又是倒置的?什么鬼?疑惑吧?
const static GLfloat FBO_VERTICES_AND_TEXTURE[] = {
        1.0f, -1.0f, // 右下
        // 纹理坐标
        1.0f,1.0f,
        1.0f, 1.0f, // 右上
        // 纹理坐标
        1.0f,0.0f,
        -1.0f, -1.0f, // 左下
        // 纹理坐标
        0.0f,1.0f,
        -1.0f, 1.0f, // 左上
        // 纹理坐标
        0.0f,0.0f
};

一运行,我们惊喜地发现,实际情况居然和 Opengl ES之纹理贴图 一文所说的不一样了,经过FBO后的贴图再渲染到屏幕时,居然图片是倒置的,如下图:

这是什么为什么呢?

默认情况下,OpenGL ES 通过绘制到窗口系统提供的帧缓冲区,也就是屏幕本身就是一个默认的FBO,而使用FBO进行纹理贴图的时候需要以真正的纹理坐标(原点0,0在图片的左下角)为基准进行贴图。因此如果直接使用屏幕进行纹理贴图,其实是应该细分成两个过程的,先以左下角为纹理坐标原点进行贴图,然后将贴图后的屏幕默认FBO旋转绕X轴旋转180度与屏幕坐标(左上角是坐标原点)重合,但是这两个细分的过程可以做个取巧就是直接以左上角为纹理坐标原点进行贴图,得到的结果是一样的。

但是我们在单独使用FBO时,仍应该遵循以左下角为纹理坐标原点的原则进行纹理贴图。因此我们只需修改一下顶点坐标和纹理坐标,以左下角为纹理坐标作为原点进行FBO贴图,然后再将FBO旋绕到屏幕上即可:

// 真正的纹理坐标在图片的左下角
const static GLfloat FBO_VERTICES_AND_TEXTURE[] = {
        1.0f, -1.0f, // 右下
        // 纹理坐标
        1.0f,0.0f,
        1.0f, 1.0f, // 右上
        // 纹理坐标
        1.0f,1.0f,
        -1.0f, -1.0f, // 左下
        // 纹理坐标
        0.0f,0.0f,
        -1.0f, 1.0f, // 左上
        // 纹理坐标
        0.0f,1.0f
};

运行结果如图:

以上就是Opengl ES之FBO帧缓冲对象使用详解的详细内容,更多关于Opengl ES FBO帧缓冲对象的资料请关注我们其它相关文章!

(0)

相关推荐

  • Android OpenGLES如何给相机添加滤镜详解

    滤镜介绍 目前市面上的滤镜有很多,但整体归类也就几样,都是在fragment shader中进行处理.目前滤镜最常用的就是 lut滤镜以及调整RGB曲线的滤镜了.其他的类型变更大同小异. 动态滤镜的构建 为了实现动态下载的滤镜,我们接下来实现一套滤镜的json参数,主要包括滤镜类型.滤镜名称.vertex shader.fragment shader 文件.统一变量列表.与统一变量绑定的纹理图片.默认滤镜强度.是否带纹理宽高偏移量.音乐路径.音乐是否循环播放等参数. json 以及各个字段的介绍

  • 一文详解 OpenGL ES 纹理颜色混合的方法

    目录 一.混合API 二.参数含义 2.1 举个栗子 2.2 参数含义 三. 几种常用混合方式效果 3.1 混合(GL_ONE, GL_ZERO) 3.2 混合(GL_ONE, GL_ONE) 3.3 混合(GL_ONE, GL_ONE_MINUS_DST_ALPHA) 3.4 混合 (GL_SRC_ALPHA, GL_ONE) 3.5 混合 (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) 在OpenGL中绘制的时候,有时候想使新画的颜色和已经有的颜色按照一定的方式

  • Android OpenGL ES实现简单绿幕抠图

    目录 正文 OES Filter BlendShader Filter 最后的效果 缺陷 正文 实现绿幕抠图,其实想法很简单. 这里简单粗暴的使用着色器替换. OES Filter 直接实现在相机预览上的Shader #extension GL_OES_EGL_image_external : require precision mediump float; varying vec2 vTextureCoordinate; uniform samplerExternalOES uTexture;

  • 在iOS中使用OpenGL ES实现绘画板的方法

    今天我们使用 OpenGL ES 来实现一个绘画板,主要介绍在 OpenGL ES 中绘制平滑曲线的实现方案. 首先看一下最终效果: 在 iOS 中,有很多种方式可以实现一个绘画板,比如我的另外一个项目 MFPaintView 就是基于 CoreGraphics 实现的. 然而,使用 OpenGL ES 来实现可以获得更多的灵活性,比如我们可以自定义笔触的形状,这是其他实现方式做不到的. 我们知道,OpenGL ES 中只有 点.直线.三角形 这三种图元.因此, 怎么在 OpenGL ES 中绘

  • Android利用OpenGLES绘制天空盒实例教程

    前言 天空盒这个效果最早是在腾讯的实景地图里看到的,当时觉得很牛逼,但是没有想过自己去实现以下.最近这段时间对opengl很有兴趣,顺便就搞了这个天空盒,话不多说,先上效果. 天空盒的原理就是在三维空间中放置一个正方体,然后将我们的相机放置在正方体内,当我们的视点转动,相机跟着转动.我们就可以看到相应的景色的变换了,天空盒本质上是一个立方体. OpenGL 关于什么是OpenGL,什么是OpenGLES就不细说了,不了解的就自行百度吧,我们主要是关注代码.整个项目采用了Kotlin + Ndk的

  • OpenGL中点Bresenham绘制直线算法

    本文实例为大家分享了OpenGL中点Bresenham绘制直线算法,供大家参考,具体内容如下 环境 macos xcode编译器 代码 #include <GLUT/GLUT.h> #include <iostream> #include<iostream> #include<cstdlib> #include<ctime> using namespace std; float wid = 400; //设置窗口的大小,约定窗口必须为正方形 fl

  • Opengl ES之FBO帧缓冲对象使用详解

    目录 FBO介绍 如何使用FBO FBOOpengl.h FBOOpengl.cpp FBO介绍 FBO帧缓冲对象,它的主要作用一般就是用作离屏渲染,例如做Camera相机图像采集进行后期处理时就可能会用到FBO.假如相机出图的是OES纹理,为了方便后期处理,一般先将OES纹理通过FBO转换成普通的2D纹理,然后再通过FBO等增加美颜等其他各种特效滤镜,最后将FBO一路流送进编码器进行编码,另外一路渲染到屏幕上进行预览显示. FBO总结起来就是可以暂时将未处理完的帧不直接渲染到屏幕上,而是渲染到

  • JSP的request对象实例详解

    JSP的request对象实例详解 一 request对象定义 客户端的请求信息被封装在request对象中,通过它才能了解客户的需求,然后做出响应.它是HttpServletRequest类的实例.request对象具有请求域,即完成客户端的请求之前,该对象一直有效. 二 request对象方法 三 实例 <%@ page language="java" import="java.util.*" contentType="text/html; ch

  • Android 帧动画的实例详解

    Android 帧动画的实例详解 对于 Android 帧动画 大体上可以理解成 一张张图片 按一定顺序切换, 这样当连续几张图是一组动画时,就可以连起来了看成是一个小电影,你懂得 好得,比就装到这里,下面开始进入正题,由于产品需求 需要做一个 声音喇叭动态切换的样式,我特么第一就想到是帧动画切换,然后就百度了一些资料,发现 真的, 现在这个网上太多的资料是 copy粘贴过来的, 一错全错,对于这种情况我只想说,made,一群垃圾, 所以今天我将带你们走进Android 正确帧动画地址. 第一步

  • java 虚拟机中对象访问详解

    java 虚拟机中对象访问详解 对象访问会涉及到Java栈.Java堆.方法区这三个内存区域. 如下面这句代码: Object objectRef = new Object(); 假设这句代码出现在方法体中,"Object objectRef" 这部分将会反映到Java栈的本地变量中,作为一个reference类型数据出现.而"new Object()"这部分将会反映到Java堆中,形成一块存储Object类型所有实例数据值的结构化内存,根据具体类型以及虚拟机实现的

  • Java语言面向对象编程思想之类与对象实例详解

    在初学者学Java的时候,面向对象很难让人搞懂,那么今天小编就来为大家把这个思想来为大家用极为简单的方法理解吧. 首先我们来简单的阐述面向对象的思想. 面向对象: 官方的语言很抽象,我们把官方的解释和定义抛开.想想,自己有什么,对!!我们自己有手脚眼口鼻等一系列的器官.来把自己所具有的器官就可以看作我们的属性,自己是不是可以喜怒哀乐和嬉笑怒骂,这些是不是我们的行为,那么自己的具有的属性加自己有的行为就称为一个对象. 注意!!我们自己,一个个体是一个对象,因为,你是你,我是我,我们虽然有相同的,但

  • Android 逐帧动画创建实例详解

    Android 逐帧动画创建实例详解 前言: 我们看早期电影的时候,电影通常是一张一张播放,用我们现在专有名词来说,就是一帧帧来,安卓同样有这样动画效果的编排形式. 那么我们先定义逐帧动画xml文件 <?xml version="1.0" encoding="utf-8"?> <animation-list xmlns:android="http://schemas.android.com/apk/res/android" an

  • JavaScript String 对象常用方法详解

    字符串是不可变的.字符串方法,不会改变原有字符串的内容,而是返回一个新字符串. charAt():返回在指定位置的字符. concat():连接两个字符串文本,并返回一个新的字符串. indexOf(): indexOf() 方法返回指定值在字符串对象中首次出现的位置. match(): 使用正则表达式与字符串相比较. replace(): 被用来在正则表达式和字符串直接比较,然后用新的子串来替换被匹配的子串. slice(): 摘取一个字符串区域,返回一个新的字符串. split(): 通过分

  • Bootstrap学习笔记之进度条、媒体对象实例详解

    1.基础进度条 要写在<div class="progress"></div>里面. <div class="col-md-6"> <div class="progress"> <div class="progress-bar" style="width:30%;"></div> </div> </div> 2.

  • Java创建内部类对象实例详解

    Java创建内部类对象实例详解 要想使用new生成一个内部类的实例,需要先指向一个外部类的实例,也就是先生成外部类的实例, 因为内部类可以调用外部类的成员,当没有外部类实例的时候也就没有这些成员的内存空间,内部类在实例化的时候,调用外部类的成员就会出错,所以需要使用外部类的实例 + 点 + new 的方式实例化一个新的内部类 class TestInner{ public static void main(String [] args) { Outer outer = new Outer();

  • java对象拷贝详解及实例

    java对象拷贝详解及实例 Java赋值是复制对象引用,如果我们想要得到一个对象的副本,使用赋值操作是无法达到目的的: @Test public void testassign(){ Person p1=new Person(); p1.setAge(31); p1.setName("Peter"); Person p2=p1; System.out.println(p1==p2);//true } 如果创建一个对象的新的副本,也就是说他们的初始状态完全一样,但以后可以改变各自的状态,

随机推荐