Python队列的定义与使用方法示例

本文实例讲述了Python队列的定义与使用方法。分享给大家供大家参考,具体如下:

虽然Python有自己的队列模块,我们只需要在使用时引入该模块就行,但是为了更好的理解队列,自己将队列实现了一下。

队列是一种数据结构,它的特点是先进先出,也就是说队尾添加一个元素,队头移除一个元素,类似于商场排队结账,先来的人先接账,后来的排在队尾。在我们日常生活中,发送短信就会用到队列。下面是Python实现队列的代码:

#!/usr/bin/python
#coding=utf-8
class Queue(object) :
 def __init__(self, size) :
  self.size = size
  self.queue = []
 def __str__(self) :
  return str(self.queue)
 #获取队列的当前长度
 def getSize(self) :
  return len(self.quene)
 #入队,如果队列满了返回-1或抛出异常,否则将元素插入队列尾
 def enqueue(self, items) :
  if self.isfull() :
   return -1
   #raise Exception("Queue is full")
  self.queue.append(items)
 #出队,如果队列空了返回-1或抛出异常,否则返回队列头元素并将其从队列中移除
 def dequeue(self) :
  if self.isempty() :
   return -1
   #raise Exception("Queue is empty")
  firstElement = self.queue[0]
  self.queue.remove(firstElement)
  return firstElement
 #判断队列满
 def isfull(self) :
  if len(self.queue) == self.size :
   return True
  return False
 #判断队列空
 def isempty(self) :
  if len(self.queue) == 0 :
   return True
  return False

下面是该队列类.py文件的测试代码:

if __name__ == '__main__' :
 queueTest = Queue(10)
 for i in range(10) :
  queueTest.enqueue(i)
 print queueTest.isfull()
 print queueTest
 print queueTest.getSize()
 for i in range(5) :
  print queueTest.dequeue()
 print queueTest.isempty()
 print queueTest
 print queueTest.getSize()

测试结果:

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python实现堆栈与队列的方法

    本文实例讲述了python实现堆栈与队列的方法.分享给大家供大家参考.具体分析如下: 1.python实现堆栈,可先将Stack类写入文件stack.py,在其它程序文件中使用from stack import Stack,然后就可以使用堆栈了. stack.py的程序: 复制代码 代码如下: class Stack():      def __init__(self,size):          self.size=size;          self.stack=[];         

  • python计算最大优先级队列实例

    复制代码 代码如下: # -*- coding: utf-8 -*- class Heap(object): @classmethod    def parent(cls, i):        """父结点下标"""        return int((i - 1) >> 1); @classmethod    def left(cls, i):        """左儿子下标""

  • Python实现简单多线程任务队列

    最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题.梯度下降算法的代码如下(伪代码): def gradient_descent(): # the gradient descent code plotly.write(X, Y) 一般来说,当网络请求 plot.ly 绘图时会阻塞等待返回,于是也会影响到其他的梯度下降函数的执行速度. 一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好. 我不想用一个像 cerely(一种分布式任

  • Python实现队列的方法

    本文实例讲述了Python实现队列的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/bin/env python queue = [] def enQ(): queue.append(raw_input('Enter new string: ').strip()) #调用list的列表的pop()函数.pop(0)为列表的第一个元素 def deQ(): if len(queue) == 0: print 'Cannot pop from an empty queue!' else

  • Python多线程和队列操作实例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 复制代码 代码如下: #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue):         super().__in

  • python数据结构之二叉树的建立实例

    先建立二叉树节点,有一个data数据域,left,right 两个指针域 复制代码 代码如下: # -*- coding: utf - 8 - *- class TreeNode(object): def __init__(self, left=0, right=0, data=0):        self.left = left        self.right = right        self.data = data 复制代码 代码如下: class BTree(object):

  • Python中线程的MQ消息队列实现以及消息队列的优点解析

    "消息队列"是在消息的传输过程中保存消息的容器.消息队列管理器在将消息从它的源中继到它的目标时充当中间人.队列的主要目的是提供路由并保证消息的传递:如果发送消息时接收者不可用,消息队列会保留消息,直到可以成功地传递它.相信对任何架构或应用来说,消息队列都是一个至关重要的组件,下面是十个理由: Python的消息队列示例: 1.threading+Queue实现线程队列 #!/usr/bin/env python import Queue import threading import

  • Python实现的数据结构与算法之队列详解

    本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操作在队首(front)进行. 二.ADT 队列ADT(抽象数据类型)一般提供以下接口: ① Queue() 创建队列 ② enqueue(item) 向队尾插入项 ③ dequeue() 返回队首的项,并从队列中删除该项 ④ empty() 判断队列是否为空 ⑤ size() 返回队列中项的个数 队

  • Python实现优先级队列结构的方法详解

    最简单的实现 一个队列至少满足2个方法,put和get. 借助最小堆来实现. 这里按"值越大优先级越高"的顺序. #coding=utf-8 from heapq import heappush, heappop class PriorityQueue: def __init__(self): self._queue = [] def put(self, item, priority): heappush(self._queue, (-priority, item)) def get(

  • Python3中多线程编程的队列运作示例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue): super().__init__() # 必须调用 self.

  • python数据结构之图深度优先和广度优先实例详解

    本文实例讲述了python数据结构之图深度优先和广度优先用法.分享给大家供大家参考.具体如下: 首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为"回溯点". 深度优先算法: (1)访问初始顶点v并标记顶点v已访问. (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行:否则回

随机推荐