Java经典排序算法之归并排序详解

一、归并排序

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

二、归并操作

三、两路归并算法

1、算法基本思路

 设两个有序的子文件(相当于输入堆)放在同一向量中相邻的位置上:R[low..m],R[m+1..high],先将它们合并到一个局部的暂存向量R1(相当于输出堆)中,待合并完成后将R1复制回R[low..high]中。

(1)合并过程

 合并过程中,设置i,j和p三个指针,其初值分别指向这三个记录区的起始位置。合并时依次比较R[i]和R[j]的关键字,取关键字较小的记录复制到R1[p]中,然后将被复制记录的指针i或j加1,以及指向复制位置的指针p加1。
     重复这一过程直至两个输入的子文件有一个已全部复制完毕(不妨称其为空),此时将另一非空的子文件中剩余记录依次复制到R1中即可。

(2)动态申请R1

 实现时,R1是动态申请的,因为申请的空间可能很大,故须加入申请空间是否成功的处理。

2、归并算法

void Merge(SeqList R,int low,int m,int high)
 {//将两个有序的子文件R[low..m)和R[m+1..high]归并成一个有序的
 //子文件R[low..high]
 int i=low,j=m+1,p=0; //置初始值
 RecType *R1; //R1是局部向量,若p定义为此类型指针速度更快
 R1=(ReeType *)malloc((high-low+1)*sizeof(RecType));
 if(! R1) //申请空间失败
 Error("Insufficient memory available!");
 while(i<=m&&j<=high) //两子文件非空时取其小者输出到R1[p]上
 R1[p++]=(R[i].key<=R[j].key)?R[i++]:R[j++];
 while(i<=m) //若第1个子文件非空,则复制剩余记录到R1中
 R1[p++]=R[i++];
 while(j<=high) //若第2个子文件非空,则复制剩余记录到R1中
 R1[p++]=R[j++];
 for(p=0,i=low;i<=high;p++,i++)
 R[i]=R1[p];//归并完成后将结果复制回R[low..high]
 } //Merge

四、归并排序

归并排序有两种实现方法:自底向上和自顶向下。下面说说自顶向下的方法

(1)分治法的三个步骤

设归并排序的当前区间是R[low..high],分治法的三个步骤是:
①分解:将当前区间一分为二,即求分裂点        
②求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
③组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。

(2)具体算法

void MergeSortDC(SeqList R,int low,int high)
 {//用分治法对R[low..high]进行二路归并排序
 int mid;
 if(low<high){//区间长度大于1
  mid=(low+high)/2; //分解
  MergeSortDC(R,low,mid); //递归地对R[low..mid]排序
  MergeSortDC(R,mid+1,high); //递归地对R[mid+1..high]排序
  Merge(R,low,mid,high); //组合,将两个有序区归并为一个有序区
 }
 }//MergeSortDC

(3)算法MergeSortDC的执行过程

算法MergeSortDC的执行过程如下图所示的递归树。

五、算法分析

1、稳定性

归并排序是一种稳定的排序。

2、存储结构要求

可用顺序存储结构。也易于在链表上实现。

3、时间复杂度

对长度为n的文件,需进行 趟二路归并,每趟归并的时间为O(n),故其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlgn)。

4、空间复杂度

需要一个辅助向量来暂存两有序子文件归并的结果,故其辅助空间复杂度为O(n),显然它不是就地排序。

注意:

若用单链表做存储结构,很容易给出就地的归并排序。

5、比较操作的次数介于(nlogn) / 2和nlogn - n + 1。

6、赋值操作的次数是(2nlogn)。归并算法的空间复杂度为:0 (n)

7、归并排序比较占用内存,但却是一种效率高且稳定的算法。

六、代码实现

public class MergeSortTest { 

 public static void main(String[] args) {
 int[] data = new int[] { 2, 4, 7, 5, 8, 1, 3, 6 };
 System.out.print("初始化:\t");
 print(data);
 System.out.println(""); 

 mergeSort(data, 0, data.length - 1); 

 System.out.print("\n排序后: \t");
 print(data);
 } 

 public static void mergeSort(int[] data, int left, int right) {
 if (left >= right)
  return;
 //两路归并
 // 找出中间索引
 int center = (left + right) / 2;
 // 对左边数组进行递归
 mergeSort(data, left, center);
 // 对右边数组进行递归
 mergeSort(data, center + 1, right);
 // 合并
 merge(data, left, center, center + 1, right);
 System.out.print("排序中:\t");
 print(data);
 } 

 /**
 * 将两个数组进行归并,归并前面2个数组已有序,归并后依然有序
 *
 * @param data
 *  数组对象
 * @param leftStart
 *  左数组的第一个元素的索引
 * @param leftEnd
 *  左数组的最后一个元素的索引
 * @param rightStart
 *  右数组第一个元素的索引
 * @param rightEnd
 *  右数组最后一个元素的索引
 */
 public static void merge(int[] data, int leftStart, int leftEnd,
  int rightStart, int rightEnd) {
 int i = leftStart;
 int j = rightStart;
 int k = 0;
 // 临时数组
 int[] temp = new int[rightEnd - leftStart + 1]; //创建一个临时的数组来存放临时排序的数组
 // 确认分割后的两段数组是否都取到了最后一个元素
 while (i <= leftEnd && j <= rightEnd) {
  // 从两个数组中取出最小的放入临时数组
  if (data[i] > data[j]) {
  temp[k++] = data[j++];
  } else {
  temp[k++] = data[i++];
  }
 }
 // 剩余部分依次放入临时数组(实际上两个while只会执行其中一个)
 while (i <= leftEnd) {
  temp[k++] = data[i++];
 }
 while (j <= rightEnd) {
  temp[k++] = data[j++];
 }
 k = leftStart;
 // 将临时数组中的内容拷贝回原数组中 // (原left-right范围的内容被复制回原数组)
 for (int element : temp) {
  data[k++] = element;
 }
 } 

 public static void print(int[] data) {
 for (int i = 0; i < data.length; i++) {
  System.out.print(data[i] + "\t");
 }
 System.out.println();
 }
}

七、运行结果

初始化: 2 4 7 5 8 1 3 6 

排序中: 2 4 7 5 8 1 3 6
排序中: 2 4 5 7 8 1 3 6
排序中: 2 4 5 7 8 1 3 6
排序中: 2 4 5 7 1 8 3 6
排序中: 2 4 5 7 1 8 3 6
排序中: 2 4 5 7 1 3 6 8
排序中: 1 2 3 4 5 6 7 8 

排序后: 1 2 3 4 5 6 7 8

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • java数据结构排序算法之归并排序详解

    本文实例讲述了java数据结构排序算法之归并排序.分享给大家供大家参考,具体如下: 在前面说的那几种排序都是将一组记录按关键字大小排成一个有序的序列,而归并排序的思想是:基于合并,将两个或两个以上有序表合并成一个新的有序表 归并排序算法:假设初始序列含有n个记录,首先将这n个记录看成n个有序的子序列,每个子序列长度为1,然后两两归并,得到n/2个长度为2(n为奇数的时候,最后一个序列的长度为1)的有序子序列.在此基础上,再对长度为2的有序子序列进行亮亮归并,得到若干个长度为4的有序子序列.如此重

  • 深入探究TimSort对归并排序算法的优化及Java实现

    简介 MergeSort对已经反向排好序的输入时复杂度为O(n^2),而timsort就是针对这种情况,对MergeSort进行优化而产生的,平均复杂度为n*O(log n),最好的情况为O(n),最坏情况n*O(log n).并且TimSort是一种稳定性排序.思想是先对待排序列进行分区,然后再对分区进行合并,看起来和MergeSort步骤一样,但是其中有一些针对反向和大规模数据的优化处理. 归并排序的优化思想 归并排序有以下几点优化方法: 和快速排序一样,对于小数组可以使用插入排序或者选择排

  • java 归并排序的实例详解

    java 归并排序的实例详解 归并排序 归并排序,指的是将两个已经排序的序列合并成一个序列的操作. 归并操作的过程如下: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 设定两个指针,最初位置分别为两个已经排序序列的起始位置 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 重复步骤3直到某一指针到达序列尾 将另一序列剩下的所有元素直接复制到合并序列尾 Java代码 /** * 归并排序 * * @param ts */ @SuppressWa

  • java实现归并排序算法

    归并排序算法思想: 分而治之(divide - conquer);每个递归过程涉及三个步骤 第一, 分解: 把待排序的 n 个元素的序列分解成两个子序列, 每个子序列包括 n/2 个元素. 第二, 治理: 对每个子序列分别调用归并排序MergeSort, 进行递归操作 第三, 合并: 合并两个排好序的子序列,生成排序结果. public static void mergeSort(int[] a, int[] tmp, int left, int right) { if (left < righ

  • java 中归并排序算法详解

    java 中归并排序算法详解 归并排序算法,顾名思义,是一种先分再合的算法,其算法思想是将要排序的数组分解为单个的元素,每个元素就是一个单个的个体,然后将相邻的两个元素进行从小到大或从大到小的顺序排序组成一个整体,每个整体包含一到两个元素,然后对相邻的整体继续"合"并,因为每个整体都是排过序的,因而可以采用一定的算法对其进行合并,合并之后每个整体包含三到四个元素,继续对相邻的整体进行合并,直到所有的整体都合并为一个整体,最终得到的整体就是将原数组进行排序之后的结果. 对于相邻的整体,其

  • 归并排序的原理及java代码实现

    概述 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序采用的是递归来实现,属于"分而治之",将目标数组从中间一分为二,之后分别对这两个数组进行排序,排序完毕之后再将排好序的两个数组"归并"到一起,归并排序最重要的也就是这个"归并"的过程,归并的过程中需要额外的跟需要归并的两个数组长度一致的空间. 效果图: 步骤 申请空间,

  • Java经典排序算法之归并排序详解

    一.归并排序 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序列段间有序.若将两个有序表合并成一个有序表,称为二路归并. 归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1:否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直

  • JAVA十大排序算法之归并排序详解

    目录 归并排序 怎么分 怎么治 代码实现 时间复杂度 算法稳定性 总结 归并排序 归并,指合并,合在一起.归并排序(Merge Sort)是建立在归并操作上的一种排序算法.其主要思想是分而治之.什么是分而治之?分而治之就是将一个复杂的计算,按照设定的阈值进行分解成多个计算,然后将各个计算结果进行汇总.即"分"就是把一个大的通过递归拆成若干个小的,"治"就是将分后的结果在合在一起. 若将两个有序集合并成一个有序表,称为2-路归并,与之对应的还有多路归并. 怎么分 对于

  • C语言实现排序算法之归并排序详解

    排序算法中的归并排序(Merge Sort)是利用"归并"技术来进行排序.归并是指将若干个已排序的子文件合并成一个有序的文件. 一.实现原理: 1.算法基本思路 设两个有序的子文件(相当于输入堆)放在同一向量中相邻的位置上:R[low..m],R[m+1..high],先将它们合并到一个局部的暂存向量R1(相当于输出堆)中,待合并完成后将R1复制回R[low..high]中. (1)合并过程 合并过程中,设置i,j和p三个指针,其初值分别指向这三个记录区的起始位置.合并时依次比较R[i

  • java 算法之归并排序详解及实现代码

    java 算法之归并排序详解 一.思想 归并排序:将一个数组排序,可以先(递归地)将它分成两半部份分别排序,然后将结果归并起来: 二.概念 归并:将两个有序的数组归并成一个更大的有序数组: 三.特点 优点:能够保证将任意长度为N的数组排序所需要的时间和NlogN成正比: 缺点:需要额外的空间和N成正比: 四.实现方法 将两个不同的有序数组归并到第三个数组中: 先将前半部分排序,在将后半部分排序,然后在数组中移动元素而不需要使用额外的空间: 五.代码 /** * 归并排序 * * @author

  • JavaScript实现基础排序算法的示例详解

    目录 前言 正文 1.冒泡排序 2.选择排序 3.插入排序 4.快速排序 前言 文本来总结常见的排序算法,通过 JvavScript  来实现 正文 1.冒泡排序 算法思想:比较相邻两个元素的大小,如果第一个比第二个大,就交换它们.从头遍历到尾部,当一轮遍历完后,数组最后一个元素是最大的.除去最后一个元素,对剩下的元素重复执行上面的流程,每次找出剩余元素中最大的,遍历完后,数组是升序的 算法分析:总共需要进行length * (length - 1) / 2 次比较,所以时间复杂度为O(n^2)

  • Java经典排序算法之希尔排序详解

    一.希尔排序(Shell Sort) 希尔排序(Shell Sort)是一种插入排序算法,因D.L.Shell于1959年提出而得名. Shell排序又称作缩小增量排序. 二.希尔排序的基本思想 希尔排序的中心思想就是:将数据进行分组,然后对每一组数据进行排序,在每一组数据都有序之后,就可以对所有的分组利用插入排序进行最后一次排序.这样可以显著减少交换的次数,以达到加快排序速度的目的. 希尔排序的中心思想:先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组.所有距离为dl的倍数

  • JAVA十大排序算法之冒泡排序详解

    目录 冒泡排序 代码实现 代码实现 时间复杂度 算法稳定性 总结 冒泡排序 1.从数组头开始,比较相邻的元素.如果第一个比第二个大(小),就交换它们两个 2.对每一对相邻元素作同样的工作,从开始第一对到尾部的最后一对,这样在最后的元素应该会是最大(小)的数 3.重复步骤1~2,重复次数等于数组的长度,直到排序完成 代码实现 对下面数组实现排序:{24, 7, 43, 78, 62, 98, 82, 18, 54, 37, 73, 9} 代码实现 public class BubbleSort {

  • JAVA十大排序算法之堆排序详解

    目录 堆排序 知识补充 二叉树 满二叉树 完全二叉树 二叉堆 代码实现 时间复杂度 算法稳定性 思考 总结 堆排序 这里的堆并不是JVM中堆栈的堆,而是一种特殊的二叉树,通常也叫作二叉堆.它具有以下特点: 它是完全二叉树 堆中某个结点的值总是不大于或不小于其父结点的值 知识补充 二叉树 树中节点的子节点不超过2的有序树 满二叉树 二叉树中除了叶子节点,每个节点的子节点都为2,则此二叉树为满二叉树. 完全二叉树 如果对满二叉树的结点进行编号,约定编号从根结点起,自上而下,自左而右.则深度为k的,有

  • JAVA十大排序算法之基数排序详解

    目录 基数排序 代码实现 时间复杂度 算法稳定性 基数排序 vs 桶排序 vs 计数排序 总结 基数排序 常见的数据元素一般是由若干位组成的,比如字符串由若干字符组成,整数由若干位0~9数字组成. 基数排序按照从右往左的顺序,依次将每一位都当做一次关键字,然后按照该关键字对数组排序,同时每一轮排序都基于上轮排序后的结果:当我们将所有的位排序后,整个数组就达到有序状态.基数排序不是基于比较的算法. 基数是什么意思?对于十进制整数,每一位都只可能是0~9中的某一个,总共10种可能.那10就是它的基,

随机推荐