iOS 多线程总结之GCD的使用详解

进程与线程

进程就是一个应用程序在处理机上的一次执行过程,它是一个动态的概念,而线程是进程中的一部分,进程包含多个线程在运行。

线程是指进程内的一个执行单元,也是进程内的可调度实体.

与进程的区别:

(1)地址空间:线程是进程内的一个执行单元;进程至少有一个线程;它们共享进程的地址空间;而进程有自己独立的地址空间;
(2)资源拥有:进程是资源分配和拥有的单位,同一个进程内的线程共享进程的资源
(3)线程是处理器调度的基本单位,但进程不是.
(4)二者均可并发执行.

GCD

1.什么是GCD?

全称是Grand Central Dispatch,可译为“伟大的中枢调度器”

纯C语言,提供了非常多强大的函数

2.GCD的优势

GCD是苹果公司为多核的并行运算提出的解决方案

GCD会自动利用更多的CPU内核(比如双核、四核)

GCD会自动管理线程的生命周期(创建线程、调度任务、销毁线程)

程序员只需要告诉GCD想要执行什么任务,不需要编写任何线程管理代码

队列与任务

1.队列主要包含三种:主线程队列、并行队列、串行队列

2.任务主要包含两种:异步任务和同步任务

多线程执行过程就是把任务放在队列中去执行的过程

(在计算机操作系统中对异步和同步有很深入的概念和定义,并影响到计算机系统有单线程到多线程的过渡发展,其中牵涉到线程切换、时间片等概念。但在GCD这里我们只做大致使用区别)

队列:

  1. 并行队列 :在队列中的多个任务(线程) 同时执行 (不按顺序执行)
  2. 串行队列: 在队列中的多个任务(线程)排队 依次执行(按顺序执行)

任务:

同步(sync) 和 异步(async) 的主要区别在于会不会阻塞当前线程,直到 Block 中的任务执行完毕!

如果是 同步(sync) 操作,它会阻塞当前线程并等待 Block 中的任务执行完毕,然后当前线程才会继续往下运行。

如果是 异步(async)操作,当前线程会直接往下执行,它不会阻塞当前线程。

3.队列的创建方法

可以使用dispatch_queue_create来创建对象,需要传入两个参数,第一个参数表示队列的唯一标识符,用于DEBUG,可为空;第二个参数用来识别是串行队列还是并行队列。DISPATCH_QUEUE_SERIAL表示串行队列,DISPATCH_QUEUE_CONCURRENT表示并行队列。

// 串行队列的创建方法
dispatch_queue_t queue= dispatch_queue_create("test.queue", DISPATCH_QUEUE_SERIAL);
// 并行队列的创建方法
dispatch_queue_t queue= dispatch_queue_create("test.queue", DISPATCH_QUEUE_CONCURRENT);

对于并行队列,还可以使用dispatch_get_global_queue来创建全局并行队列。GCD默认提供了全局的并行队列,需要传入两个参数。第一个参数表示队列优先级,一般用DISPATCH_QUEUE_PRIORITY_DEFAULT。第二个参数暂时没用,用0即可。

4.任务的创建方法

// 同步执行任务创建方法
dispatch_sync(queue, ^{
NSLog(@"%@",[NSThread currentThread]); // 这里放任务代码
});
// 异步执行任务创建方法
dispatch_async(queue, ^{
NSLog(@"%@",[NSThread currentThread]); // 这里放任务代码
});

虽然使用GCD只需两步,但是既然我们有两种队列,两种任务执行方式,那么我们就有了四种不同的组合方式。这四种不同的组合方式是

1.并行队列 + 同步执行
2.并行队列 + 异步执行
3.串行队列 + 同步执行
4.串行队列 + 异步执行

5.GCD的基本使用

并行队列+同步执行

不会开启新线程,执行完一个任务,再执行下一个任务

-(void) syncConcurrent{
NSLog(@"syncConcurrent---begin");
dispatch_queue_t queue= dispatch_queue_create("test.queue", DISPATCH_QUEUE_CONCURRENT);
dispatch_sync(queue, ^{
  for (int i = 0; i < 2; ++i) {
    NSLog(@"1------%@",[NSThread currentThread]);
  }
});
dispatch_sync(queue, ^{
  for (int i = 0; i < 2; ++i) {
    NSLog(@"2------%@",[NSThread currentThread]);
  }
});
dispatch_sync(queue, ^{
  for (int i = 0; i < 2; ++i) {
    NSLog(@"3------%@",[NSThread currentThread]);
  }
});

NSLog(@"syncConcurrent---end");
 }

并行队列 + 异步执行

可同时开启多线程,任务交替执行

- (void) asyncConcurrent
{
NSLog(@"asyncConcurrent---begin");

dispatch_queue_t queue= dispatch_queue_create("test.queue", DISPATCH_QUEUE_CONCURRENT);

dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"1------%@",[NSThread currentThread]);
 }
});
dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"2------%@",[NSThread currentThread]);
 }
});
dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"3------%@",[NSThread currentThread]);
 }
});

NSLog(@"asyncConcurrent---end");
}

串行队列 + 同步执行

不会开启新线程,在当前线程执行任务。任务是串行的,执行完一个任务,再执行下一个任务

- (void) syncSerial
{
NSLog(@"syncSerial---begin");

dispatch_queue_t queue = dispatch_queue_create("test.queue", DISPATCH_QUEUE_SERIAL);

 dispatch_sync(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"1------%@",[NSThread currentThread]);
 }
});
dispatch_sync(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"2------%@",[NSThread currentThread]);
 }
});
dispatch_sync(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"3------%@",[NSThread currentThread]);
 }
});

NSLog(@"syncSerial---end");
}

串行队列 + 异步执行

会开启新线程,但是因为任务是串行的,执行完一个任务,再执行下一个任务

- (void) asyncSerial
{
NSLog(@"asyncSerial---begin");

dispatch_queue_t queue = dispatch_queue_create("test.queue", DISPATCH_QUEUE_SERIAL);

dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"1------%@",[NSThread currentThread]);
 }
});
dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"2------%@",[NSThread currentThread]);
 }
});
dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"3------%@",[NSThread currentThread]);
 }
});

NSLog(@"asyncSerial---end");
}

主队列 + 同步执行

互等卡住不可行(在主线程中调用),会出现死锁

 - (void)syncMain
 {
 NSLog(@"syncMain---begin");

 dispatch_queue_t queue = dispatch_get_main_queue();

 dispatch_sync(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"1------%@",[NSThread currentThread]);
 }
 });
 dispatch_sync(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"2------%@",[NSThread currentThread]);
 }
 });
 dispatch_sync(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"3------%@",[NSThread currentThread]);
 }
 });  

 NSLog(@"syncMain---end");
 }

这是因为我们在主线程中执行这段代码。我们把任务放到了主队列中,也就是放到了主线程的队列中。而同步执行有个特点,就是对于任务是立马执行的。那么当我们把第一个任务放进主队列中,它就会立马执行。但是主线程现在正在处理syncMain方法,所以任务需要等syncMain执行完才能执行。而syncMain执行到第一个任务的时候,又要等第一个任务执行完才能往下执行第二个和第三个任务。

那么,现在的情况就是syncMain方法和第一个任务都在等对方执行完毕。这样大家互相等待,所以就卡住了,所以我们的任务执行不了。

主队列 + 异步执行

只在主线程中执行任务,执行完一个任务,再执行下一个任务

- (void)asyncMain
{
 NSLog(@"asyncMain---begin");

 dispatch_queue_t queue = dispatch_get_main_queue();

 dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"1------%@",[NSThread currentThread]);
 }
});
 dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"2------%@",[NSThread currentThread]);
 }
 });
 dispatch_async(queue, ^{
 for (int i = 0; i < 2; ++i) {
   NSLog(@"3------%@",[NSThread currentThread]);
 }
 }); 

 NSLog(@"asyncMain---end");
 }

GCD的队列组 dispatch_group

有时候我们会有这样的需求:分别异步执行2个耗时操作,然后当2个耗时操作都执行完毕后再回到主线程执行操作。这时候我们可以用到GCD的队列组。

我们可以先把任务放到队列中,然后将队列放入队列组中。

调用队列组的dispatch_group_notify回到主线程执行操作。

dispatch_group_t group = dispatch_group_create();

dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
// 执行1个耗时的异步操作
});

dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 // 执行1个耗时的异步操作
 });

 dispatch_group_notify(group, dispatch_get_main_queue(), ^{
 // 等前面的异步操作都执行完毕后,回到主线程...
 });

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 详解iOS多线程GCD的使用

    Grand Central Dispatch(GCD)是异步执行任务的技术之一 dispatch queue分成以下三种: 1)运行在主线程的Main queue,通过dispatch_get_main_queue获取. /*! * @function dispatch_get_main_queue * * @abstract * Returns the default queue that is bound to the main thread. * * @discussion * In or

  • 详解iOS中多线程app开发的GCD队列的使用

    GCD的基本使用 一.主队列介绍 主队列:是和主线程相关联的队列,主队列是GCD自带的一种特殊的串行队列,放在主队列中得任务,都会放到主线程中执行. 提示:如果把任务放到主队列中进行处理,那么不论处理函数是异步的还是同步的都不会开启新的线程. 获取主队列的方式: 复制代码 代码如下: dispatch_queue_t queue=dispatch_get_main_queue(); (1)使用异步函数执行主队列中得任务,代码示例: 复制代码 代码如下: // //  YYViewControll

  • IOS 多线程GCD详解

    Grand Central Dispatch (GCD)是Apple开发的一个多核编程的解决方法. dispatch queue分成以下三种: 1)运行在主线程的Main queue,通过dispatch_get_main_queue获取. #definedispatch_get_main_queue() \DISPATCH_GLOBAL_OBJECT(dispatch_queue_t, _dispatch_main_q) 可以看出,dispatch_get_main_queue也是一种disp

  • iOS-GCD使用详解及实例解析

    iOS-GCD使用详解 前言 对初学者来说,GCD似乎是一道迈不过去的坎,很多人在同步.异步.串行.并行和死锁这几个名词的漩涡中渐渐放弃治疗.本文将使用图文表并茂的方式给大家形象地解释其中的原理和规律. 线程.任务和队列的概念 异步.同步 & 并行.串行的特点 一条重要的准则 一般来说,我们使用GCD的最大目的是在新的线程中同时执行多个任务,这意味着我们需要两项条件: 能开启新的线程 任务可以同时执行 结合以上两个条件,也就等价"开启新线程的能力 + 任务同步执行的权利",只有

  • iOS-GCD详解及简单使用

    iOS-GCD 介绍 在开发过程中,我们有时会希望把一些操作封装起来延迟一段时间后再执行.iOS开发中,有两种常用的方法可以实现延迟执行,一种是使用GCD,另外一种是使用NSRunLoop类中提供的方法. 前言 对初学者来说,GCD似乎是一道迈不过去的坎,很多人在同步.异步.串行.并行和死锁这几个名词的漩涡中渐渐放弃治疗.本文将使用图文表并茂的方式给大家形象地解释其中的原理和规律. 线程.任务和队列的概念 异步.同步 & 并行.串行的特点 一条重要的准则 一般来说,我们使用GCD的最大目的是在新

  • 详解IOS中GCD的使用

    Grand Central Dispatch(GCD)是异步执行任务的技术之一.一般将应用程序中记述的线程管理用的代码在系统级中实现.开发者只需要定义想执行的任务并追加到适当的Dispatch Queue中,GCD就能生成必要的线程并计划执行任务.由于线程管理是作为系统的一部分来实现的,因此可统一管理,也可执行任务,这样就比以前的线程更有效率. 1. GCD是苹果公司为多核的并行运算提出的解决方案 GCD会自动利用更多的CPU内核(比如双核.四核) GCD会自动管理线程的生命周期(创建线程.调度

  • 详解iOS多线程GCD问题

    在iOS所有实现多线程的方案中,GCD应该是最有魅力的,因为GCD本身是苹果公司为多核的并行运算提出的解决方案.GCD在工作时会自动利用更多的处理器核心,以充分利用更强大的机器.GCD是Grand Central Dispatch的简称,它是基于C语言的.如果使用GCD,完全由系统管理线程,我们不需要编写线程代码.只需定义想要执行的任务,然后添加到适当的调度队列(dispatch queue).GCD会负责创建线程和调度你的任务,系统直接提供线程管理 dispatch queue分成以下三种:

  • iOS 多线程总结之GCD的使用详解

    进程与线程 进程就是一个应用程序在处理机上的一次执行过程,它是一个动态的概念,而线程是进程中的一部分,进程包含多个线程在运行. 线程是指进程内的一个执行单元,也是进程内的可调度实体. 与进程的区别: (1)地址空间:线程是进程内的一个执行单元;进程至少有一个线程;它们共享进程的地址空间;而进程有自己独立的地址空间; (2)资源拥有:进程是资源分配和拥有的单位,同一个进程内的线程共享进程的资源 (3)线程是处理器调度的基本单位,但进程不是. (4)二者均可并发执行. GCD 1.什么是GCD? 全

  • iOS开发探索多线程GCD任务示例详解

    目录 引言 同步任务 死锁 异步任务 总结 引言 在上一篇文章中,我们探寻了队列是怎么创建的,串行队列和并发队列之间的区别,接下来我们在探寻一下GCD的另一个核心 - 任务 同步任务 void dispatch_sync(dispatch_queue_t queue, DISPATCH_NOESCAPE dispatch_block_t block); 我们先通过lldb查看其堆栈信息,分别查看其正常运行和死锁状态的信息 我们再通过源码查询其实现 #define _dispatch_Block_

  • iOS开发探索多线程GCD队列示例详解

    目录 引言 进程与线程 1.进程的定义 2.线程的定义 3. 进程和线程的关系 4. 多线程 5. 时间片 6. 线程池 GCD 1.任务 2.队列 3.死锁 总结 引言 在iOS开发过程中,绕不开网络请求.下载图片之类的耗时操作,这些操作放在主线程中处理会造成卡顿现象,所以我们都是放在子线程进行处理,处理完成后再返回到主线程进行展示. 多线程贯穿了我们整个的开发过程,iOS的多线程操作有NSThread.GCD.NSOperation,其中我们最常用的就是GCD. 进程与线程 在了解GCD之前

  • iOS开发多线程下全局变量赋值崩溃原理详解

    目录 问题 Demo 崩溃原因 崩溃路径 验证方式 其它测试 问题 Demo 在多线程下同时给全局变量赋值时会发生崩溃: static NSObject *_instance; - (void)foo { _instance = [[NSObject alloc] init]; } 崩溃原因 如下为源码的汇编代码: Demo-iOS`-[ViewController foo]: 0x104e4e088 <+0>: stp x29, x30, [sp, #-0x10]! 0x104e4e08c

  • iOS NSThread和NSOperation的基本使用详解

    NSThread适合简单的耗时任务的执行,它有两种执行方法 - (void)oneClick{ [NSThread detachNewThreadSelector:@selector(doSomething:) toTarget:self withObject:@"oneClick"]; } -(void)doSomething:(NSString*) str{ NSLog(@"%@",str); } - (void)twoClick{ NSThread* myTh

  • IOS 中CALayer绘制图片的实例详解

    IOS 中CALayer绘制图片的实例详解 CALayer渲染内容图层.与UIImageView相比,不具有事件响应功能,且UIImageView是管理内容. 注意事项:如何使用delegate对象执行代理方法进行绘制,切记需要将delegate设置为nil,否则会导致异常crash. CALayer绘制图片与线条效果图: 代码示例: CGPoint position = CGPointMake(160.0, 200.0); CGRect bounds = CGRectMake(0.0, 0.0

  • IOS开发基础之二维数组详解

    IOS开发基础之二维数组详解 首先我们知道OC中是没有二维数组的,二维数组是通过一位数组的嵌套实现的,但是别忘了我们有字面量,实际上可以和C/C++类似的简洁地创建和使用二维数组.这里总结了创建二维数组的两种方法以及数组的访问方式. 通过字面量创建和使用二维数组(推荐) // 1.字面量创建二维数组并访问(推荐) NSArray *array2d = @[ @[@11,@12,@13], @[@21,@22,@23], @[@31,@32,@33] ]; // 字面量访问方式(推荐) NSLog

  • IOS UIView的生命周期的实例详解

    IOS UIView的生命周期的实例详解 任何对象的者有一个生命周期,即都存在一个实例化到销毁的过程. UIView对象也不例外,那么UIView从init/new开始后,直到dealloc结束的过程中都经历了哪些过程呢? 首先自定义继承自UIView的对象LifeView #import <UIKit/UIKit.h> @interface LifeView : UIView @end #import "LifeView.h" @interface LifeView ()

  • JAVA多线程实现生产者消费者的实例详解

    JAVA多线程实现生产者消费者的实例详解 下面的代码实现了生产者消费者的问题 Product.Java package consumerProducer; public class Product { private String id; public String getId() { return id; } public void setId(String id) { this.id = id; } public Product(String id) { this.id=id; } publ

  • 使用Swift代码实现iOS手势解锁、指纹解锁实例详解

    一.手势密码 1. 1.1.用UIButton组成手势的节点. 1.2.当手指接触屏幕时,调用重写的 touchesBegan:withEvent方法(在touchesBegan里调用setNeedsDisplay,这样就会自动调用drawRect方法). 1.3.当手指在屏幕上滑动时,调用重写的touchesEnded:withEvent方法. 这两个方法执行的操作是一样的:通过locationInView获取 触摸的坐标,然后用 CGRectContainsPoint 判断手指是否经过UIB

随机推荐