Java中双向链表详解及实例

Java中双向链表详解及实例

写在前面:

  双向链表是一种对称结构,它克服了单链表上指针单向性的缺点,其中每一个节点即可向前引用,也可向后引用,这样可以更方便的插入、删除数据元素。

  由于双向链表需要同时维护两个方向的指针,因此添加节点、删除节点时指针维护成本更大;但双向链表具有两个方向的指针,因此可以向两个方向搜索节点,因此双向链表在搜索节点、删除指定索引处节点时具有较好的性能。

Java语言实现双向链表:

package com.ietree.basic.datastructure.dublinklist;

/**
 * 双向链表
 *
 * @author Dylan
 */
public class DuLinkList<T> {

  // 定义一个内部类Node,Node实例代表链表的节点
  private class Node {

    // 保存节点的数据
    private T data;
    // 保存上个节点的引用
    private Node prev;
    // 指向下一个节点的引用
    private Node next;

    // 无参构造器
    public Node() {
    }

    // 初始化全部属性的构造器
    public Node(T data, Node prev, Node next) {

      this.data = data;
      this.prev = prev;
      this.next = next;

    }

  }

  // 保存该链表的头节点
  private Node header;
  // 保存该链表的尾节点
  private Node tail;
  // 保存该链表中已包含的节点数
  private int size;

  // 创建空链表
  public DuLinkList() {

    // 空链表,header和tail都是null
    header = null;
    tail = null;

  }

  // 以指定数据元素来创建链表,该链表只有一个元素
  public DuLinkList(T element) {

    header = new Node(element, null, null);
    // 只有一个节点,header、tail都指向该节点
    tail = header;
    size++;

  }

  // 返回链表的长度
  public int length() {

    return size;

  }

  // 获取链式线性表中索引为index处的元素
  public T get(int index) {

    return getNodeByIndex(index).data;

  }

  // 根据索引index获取指定位置的节点
  public Node getNodeByIndex(int index) {

    if (index < 0 || index > size - 1) {

      throw new IndexOutOfBoundsException("线性表索引越界");

    }
    if (index <= size / 2) {

      // 从header节点开始
      Node current = header;
      for (int i = 0; i <= size / 2 && current != null; i++, current = current.next) {
        if (i == index) {

          return current;

        }
      }

    } else {

      // 从tail节点开始搜索
      Node current = tail;
      for (int i = size - 1; i > size / 2 && current != null; i++, current = current.prev) {
        if (i == index) {

          return current;

        }
      }

    }

    return null;
  }

  // 查找链式线性表中指定元素的索引
  public int locate(T element) {

    // 从头结点开始搜索
    Node current = header;
    for (int i = 0; i < size && current != null; i++, current = current.next) {

      if (current.data.equals(element)) {
        return i;
      }

    }
    return -1;

  }

  // 向线性链表的指定位置插入一个元素
  public void insert(T element, int index) {

    if (index < 0 || index > size) {
      throw new IndexOutOfBoundsException("线性表索引越界");
    }

    // 如果还是空链表
    if (header == null) {

      add(element);

    } else {

      // 当index为0时,也就是在链表头处插入
      if (index == 0) {

        addAtHeader(element);

      } else {

        // 获取插入点的前一个节点
        Node prev = getNodeByIndex(index - 1);
        // 获取插入点的节点
        Node next = prev.next;
        // 让新节点的next引用指向next节点,prev引用指向prev节点
        Node newNode = new Node(element, prev, next);
        // 让prev的next节点指向新节点
        prev.next = newNode;
        // 让prev的下一个节点的prev指向新节点
        next.prev = newNode;
        size++;
      }

    }

  }

  // 采用尾插法为链表添加新节点
  public void add(T element) {

    // 如果该链表还是空链表
    if (header == null) {

      header = new Node(element, null, null);
      // 只有一个节点,header、tail都指向该节点
      tail = header;

    } else {

      // 创建新节点,新节点的pre指向原tail节点
      Node newNode = new Node(element, tail, null);
      // 让尾节点的next指向新增的节点
      tail.next = newNode;
      // 以新节点作为新的尾节点
      tail = newNode;

    }
    size++;
  }

  // 采用头插法为链表添加新节点
  public void addAtHeader(T element) {
    // 创建新节点,让新节点的next指向原来的header
    // 并以新节点作为新的header
    header = new Node(element, null, header);
    // 如果插入之前是空链表
    if (tail == null) {

      tail = header;

    }
    size++;
  }

  // 删除链式线性表中指定索引处的元素
  public T delete(int index) {

    if (index < 0 || index > size - 1) {

      throw new IndexOutOfBoundsException("线性表索引越界");

    }
    Node del = null;
    // 如果被删除的是header节点
    if (index == 0) {

      del = header;
      header = header.next;
      // 释放新的header节点的prev引用
      header.prev = null;

    } else {

      // 获取删除节点的前一个节点
      Node prev = getNodeByIndex(index - 1);
      // 获取将要被删除的节点
      del = prev.next;
      // 让被删除节点的next指向被删除节点的下一个节点
      prev.next = del.next;
      // 让被删除节点的下一个节点的prev指向prev节点
      if (del.next != null) {

        del.next.prev = prev;

      }

      // 将被删除节点的prev、next引用赋为null
      del.prev = null;
      del.next = null;

    }
    size--;
    return del.data;
  }

  // 删除链式线性表中最后一个元素
  public T remove() {

    return delete(size - 1);

  }

  // 判断链式线性表是否为空表
  public boolean empty() {

    return size == 0;

  }

  // 清空线性表
  public void clear() {

    // 将底层数组所有元素赋为null
    header = null;
    tail = null;
    size = 0;

  }

  public String toString() {

    // 链表为空链表
    if (empty()) {

      return "[]";

    } else {

      StringBuilder sb = new StringBuilder("[");
      for (Node current = header; current != null; current = current.next) {

        sb.append(current.data.toString() + ", ");

      }
      int len = sb.length();
      return sb.delete(len - 2, len).append("]").toString();

    }

  }

  // 倒序toString
  public String reverseToString() {

    if (empty()) {

      return "[]";

    } else {

      StringBuilder sb = new StringBuilder("[");
      for (Node current = tail; current != null; current = current.prev) {

        sb.append(current.data.toString() + ", ");

      }
      int len = sb.length();
      return sb.delete(len - 2, len).append("]").toString();

    }

  }

}

测试类:

package com.ietree.basic.datastructure.dublinklist;

/**
 * 测试类
 *
 * @author Dylan
 */
public class DuLinkListTest {

  public static void main(String[] args) {

    DuLinkList<String> list = new DuLinkList<String>();
    list.insert("aaaa", 0);
    list.add("bbbb");
    list.insert("cccc", 0);
    // 在索引为1处插入一个新元素
    list.insert("dddd", 1);
    // 输出顺序线性表的元素
    System.out.println(list);
    // 删除索引为2处的元素
    list.delete(2);
    System.out.println(list);
    System.out.println(list.reverseToString());
    // 获取cccc字符串在顺序线性表中的位置
    System.out.println("cccc在顺序线性表中的位置:" + list.locate("cccc"));
    System.out.println("链表中索引1处的元素:" + list.get(1));
    list.remove();
    System.out.println("调用remove方法后的链表:" + list);
    list.delete(0);
    System.out.println("调用delete(0)后的链表:" + list);

  }

}

程序输出:

[cccc, dddd, aaaa, bbbb]
[cccc, dddd, bbbb]
[bbbb, dddd, cccc]
cccc在顺序线性表中的位置:0
链表中索引1处的元素:dddd
调用remove方法后的链表:[cccc, dddd]
调用delete(0)后的链表:[dddd]

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

(0)

相关推荐

  • JAVA 数据结构链表操作循环链表

    JAVA 链表操作:循环链表 主要分析示例: 一.单链表循环链表 二.双链表循环链表 其中单链表节点和双链表节点类和接口ICommOperate<T>与上篇一致,这里不在赘述.参考:JAVA链表操作:单链表和双链表http://www.jb51.net/article/95113.htm 一.单链表循环链表 package LinkListTest; import java.util.HashMap; import java.util.Map; public class SingleCycle

  • JAVA实现链表面试题

    这份笔记整理了整整一个星期,每一行代码都是自己默写完成,并测试运行成功,同时也回顾了一下<剑指offer>这本书中和链表有关的讲解,希望对笔试和面试有所帮助. 本文包含链表的以下内容: 1.单链表的创建和遍历 2.求单链表中节点的个数 3.查找单链表中的倒数第k个结点(剑指offer,题15) 4.查找单链表中的中间结点 5.合并两个有序的单链表,合并之后的链表依然有序[出现频率高](剑指offer,题17) 6.单链表的反转[出现频率最高](剑指offer,题16) 7.从尾到头打印单链表(

  • java 中链表的定义与使用方法

    java 中链表的定义与使用方法 Java实现链表主要依靠引用传递,引用可以理解为地址,链表的遍历多使用递归,这里我存在一个疑问同一个类的不同对象的的相同方法的方法内调用算不算递归. 这里我写的是单向链表; 实例代码: package com.example.java; public class MyLink { public static void main(String [] args){ Link l=new Link(); mytype[] la; mytype dsome=new my

  • 详解java数据结构与算法之双链表设计与实现

    在单链表分析中,我们可以知道每个结点只有一个指向后继结点的next域,倘若此时已知当前结点p,需要查找其前驱结点,那么就必须从head头指针遍历至p的前驱结点,操作的效率很低,因此如果p有一个指向前驱结点的next域,那效率就高多了,对于这种一个结点中分别包含了前驱结点域pre和后继结点域next的链表,称之为双链表.本篇我们将从以下结点来分析双链表 双链表的设计与实现 双链表的主要优点是对于任意给的结点,都可以很轻易的获取其前驱结点或者后继结点,而主要缺点是每个结点需要添加额外的next域,因

  • Java 链表的定义与简单实例

     Java 链表的定义与简单实例 Java实现链表主要依靠引用传递,引用可以理解为地址,链表的遍历多使用递归,这里我存在一个疑问同一个类的不同对象的的相同方法的方法内调用算不算递归. 这里我写的是单向链表; package com.example.java; public class MyLink { public static void main(String [] args){ Link l=new Link(); mytype[] la; mytype dsome=new mytype("

  • Java单链表基本操作的实现

    最近被问到链表,是一个朋友和我讨论Java的时候说的.说实话,我学习编程的近一年时间里,学到的东西还是挺少的.语言是学了Java和C#,关于Web的学了一点Html+css+javascript.因为比较偏好,学习WinForm时比较认真,数据库操作也自己有所研究.但链表这个东西我还真没有学习和研究过,加上最近自己在看WPF,而课程也到了JSP了,比较紧. 但是我还是抽了一个晚上加半天的时间看了一下单向链表.并且使用Java试着写了一个实例出来.没有接触过链表的朋友可以作为参考,希望大家多提宝贵

  • java 实现双向链表实例详解

    java 实现双向链表实例详解 双向链表是一个基本的数据结构,在Java中LinkedList已经实现了这种结构,不过作为开发者,也要拥有自己显示这种结构的能力.话不多说,上代码:     首先是链表的节点类: /** * 链表节点 * @author Administrator * * @param <T> */ public class ChainNode<T> { private T data; //对象编号 private int dataNo; public ChainN

  • Java 数据结构链表操作实现代码

    链表是一种复杂的数据结构,其数据之间的相互关系使链表分成三种:单链表.循环链表.双向链表,下面将逐一介绍.链表在数据结构中是基础,也是重要的知识点,这里讲下Java 中链表的实现, JAVA 链表操作:单链表和双链表 主要讲述几点: 一.链表的简介 二.链表实现原理和必要性 三.单链表示例 四.双链表示例 一.链表的简介 链表是一种比较常用的数据结构,链表虽然保存比较复杂,但是在查询时候比较便捷,在多种计算机语言都相应的应用,链表有多种类别,文章针对单链表和双链表进行分析.链表中数据就像被一个链

  • Java中双向链表详解及实例

    Java中双向链表详解及实例 写在前面: 双向链表是一种对称结构,它克服了单链表上指针单向性的缺点,其中每一个节点即可向前引用,也可向后引用,这样可以更方便的插入.删除数据元素. 由于双向链表需要同时维护两个方向的指针,因此添加节点.删除节点时指针维护成本更大:但双向链表具有两个方向的指针,因此可以向两个方向搜索节点,因此双向链表在搜索节点.删除指定索引处节点时具有较好的性能. Java语言实现双向链表: package com.ietree.basic.datastructure.dublin

  • Java中自定义异常详解及实例代码

    Java中自定义异常详解及实例代码 下面做了归纳总结,欢迎批评指正 自定义异常 class ChushulingException extends Exception { public ChushulingException(String msg) { super(msg); } } class ChushufuException extends Exception { public ChushufuException(String msg) { super(msg); } } 自定义异常 En

  • java 中Map详解及实例代码

    Map接口 Map类似y(x)=x:这样的函数(key对应x,value对应y) Map与Collection并列存在.用于保存具有映射关系的数据:Key-Value Map 中的 key 和 value 都可以是任何引用类型的数据 Map 中的 key 用Set来存放,不允许重复,即同一个 Map 对象所对应的类,须重写hashCode()和equals()方法. 常用String类作为Map的"键". key 和 value 之间存在单向一对一关系,即通过指定的 key 总能找到唯

  • Java中LinkedList详解和使用示例_动力节点Java学院整理

    第1部分 LinkedList介绍 LinkedList简介 LinkedList 是一个继承于AbstractSequentialList的双向链表.它也可以被当作堆栈.队列或双端队列进行操作. LinkedList 实现 List 接口,能对它进行队列操作. LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用. LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆. LinkedList 实现java.io.Serial

  • java 泛型的详解及实例

    java 泛型的详解及实例 Java在1.5版本中增加了泛型,在没有泛型之前,从集合中读取每一个对象都需要进行强转,如果一不小心插入了类型错误的对象,在运行时就会报错,给日常开发带来了很多不必要的麻烦,比如以下代码: public class TestGeneric { public static void main(String[] args) { List list = new ArrayList(); list.add(" name:"); list.add(" zer

  • java对象拷贝详解及实例

    java对象拷贝详解及实例 Java赋值是复制对象引用,如果我们想要得到一个对象的副本,使用赋值操作是无法达到目的的: @Test public void testassign(){ Person p1=new Person(); p1.setAge(31); p1.setName("Peter"); Person p2=p1; System.out.println(p1==p2);//true } 如果创建一个对象的新的副本,也就是说他们的初始状态完全一样,但以后可以改变各自的状态,

  • java list 比较详解及实例

    java list 比较详解及实例 java里比较两个list的值是否一致,不考虑顺序,有多种方法,比如排序后直接用equals比较,相互之间执行两次containsAll等,这些办法都需要我们给list的元素类实现equals和hashcode方法.但是有一种特殊情况,如果我们并不方便去实习类的equals方法,例如是一个古老的第三方jar包,改代码会带来很多未知问题,这时候该怎么办呢. 其实很简单,万能的apache-commons早就想到了这一点,所以在commons-collection

  • Java List 用法详解及实例分析

    Java List 用法详解及实例分析 Java中可变数组的原理就是不断的创建新的数组,将原数组加到新的数组中,下文对Java List用法做了详解. List:元素是有序的(怎么存的就怎么取出来,顺序不会乱),元素可以重复(角标1上有个3,角标2上也可以有个3)因为该集合体系有索引 ArrayList:底层的数据结构使用的是数组结构(数组长度是可变的百分之五十延长)(特点是查询很快,但增删较慢)线程不同步 LinkedList:底层的数据结构是链表结构(特点是查询较慢,增删较快) Vector

  • Java 线程优先级详解及实例

    Java 线程优先级详解及实例 操作系统基本采用时分的调度运行线程,操作系统会分出一个个时间片,线程会被分配到若干个时间片,当线程的时间片用完了就会发生线程调度,并且等待着下次调度,线程被分配到的时间片多少也就决定了线程使用处理器资源的多少,而线程优先级就是决定线程能够分配多少处理器资源的线程属性. 在Java多线程中,通过一个整形变量priority来控制优先级,优先级的范围从1-10.默认是5,优先级越高越好. public class Priority { public static vo

  • java @interface 注解详解及实例

    java @interface 注解详解及实例 1 简介 在Java中,定义注解其实和定义接口差多不,只需要在interface前添加一个@符号就可以,即 @interface Zhujie{ },这就表明我们定义了一个名为 @Zhujie 的注解.注解中的每一个方法定义了这个注解类型的一个元素,特别注意:注解中方法的声明中一定不能包含参数,也不能抛出异 常:方法的返回值被限制为简单类型.String.Class.emnus.注释,和这些类型的数组,但方法可以有一个缺省值. 注解相当于一种标记,

随机推荐