IKAnalyzer结合Lucene实现中文分词(示例讲解)

1、基本介绍

随着分词在信息检索领域应用的越来越广泛,分词这门技术对大家并不陌生。对于英文分词处理相对简单,经过拆分单词、排斥停止词、提取词干的过程基本就能实现英文分词,单对于中文分词而言,由于语义的复杂导致分词并没英文分词那么简单,一般都是通过相关的分词工具来实现,目前比较常用的有庖丁分词以及IKAnalyzer等。这里我们主要通过一个简单的Demo聊聊IKAnalyzer的基本使用。IKAnalyzer是一个开源的,基于java开发的分词工具包,它独立于Lucene项目,同时提供了Lucene的默认实现。

2、IKAnalyzer结合Lucene实现简单的中文分词

我们通过一个基本的Demo来实践说明,步骤如下:

step1:准备相关的Jar依赖,lucene-core-5.1.0.jar、ik.jar,然后新建项目,引入相关依赖项目结构如下:

IkDemo-src
     -con.funnyboy.ik
-IKAnalyzer.cfg.xml
     -stopword.dic
-ext.dic
-Reference Libraries
     -lucene-core-5.1.0.jar
     -ik.jar

IKAnalyzer.cfg.xml:配置扩展词典以及停止词典 内容如下:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties> <comment>IK Analyzer 扩展配置</comment>
   <entry key="ext_dict">ext.dic;</entry>
   <entry key="ext_stopwords">stopword.dic;</entry>
</properties>

其中的ext.dic配置自己的扩展字典,stopword.dic配置自己的扩展停止词字典

step2:通过java代码验证测试

public class MyIkTest {
  public static String str = "中国人民银行我是中国人";
  public static void main(String[] args) {
     MyIkTest test = new MyIkTest();
     test.wordCount("", str);
   }
   private void wordCount(String arg,String content) {
     Analyzer analyzer = new IKAnalyzer(true); // IK实现分词 true:用最大词长分词 false:最细粒度切分
    StringReader reader = null;
    TokenStream ts = null; try {
      reader = new StringReader(content);
      ts = analyzer.tokenStream(arg,reader);
      CharTermAttribute term = ts.addAttribute(CharTermAttribute.class);
      ts.reset();
      Map<String, Integer> map = new HashMap<String, Integer>(); //统计
      while (ts.incrementToken()) {
        String str = term.toString();
        Object o = map.get(str);
        if (o == null) {
          map.put(str, new Integer(1));
         } else {
          Integer i = new Integer(((Integer) o).intValue() + 1);
           map.put(str, i);
        }
       }
      List<Entry<String, Integer>> list = new ArrayList<Entry<String, Integer>>(map.entrySet());
      Collections.sort(list,new Comparator<Map.Entry<String, Integer>>() {
        public int compare(Map.Entry<String, Integer> o1,Map.Entry<String, Integer> o2) {
          return (o2.getValue() - o1.getValue());
        } });
       for (int k=0;k<list.size();k++) {
        Entry<String, Integer> it=list.get(k);
        String word = it.getKey().toString();
        System.err.println(word+"["+it.getValue()+"]");
       }
    } catch (Exception e) {
     } finally {
      if(reader != null){
         reader.close();
      }
      if (analyzer != null) {
        analyzer.close();
      }
     }
   }
  }

执行程序测试结果如下:

中国人民银行[1]

中国人[1]

我[1]

3、配置说明

a、如何自定义配置扩展词典和停止词典 IKAnalyzer.cfg.xml中定义了扩展词典和停止词典,如果有多好个可以通过;配置多个。扩展词典是指用户可以根据自己定义的词义实现分词,比如人名在默认的词典中并未实现,需要自定义实现分词,卡可以通过在ext.dic中新增自定义的词语。停止词是指对于分词没有实际意义但出现频率很高的词,比如吗、乎等语气词,用户也可以通过在stopword.dic中自定义相关的停止词。

b、关于最大词长分词和最小粒度分词的区分 在IKAnalyzer构造方法中可以通过提供一个标示来实现最大词长分词和最小粒度分词,true为最大词长分词,默认是最小粒度分词。对"中国人民银行我是中国人"分别测试结果如下:

最大词长分词结果如下:

中国人民银行[1]

中国人[1]

我[1]

最小粒度分词结果如下:

国人[2]
中国人[2]
中国[2]
人民[1]
中国人民银行[1]
我[1]
人民银行[1]
中国人民[1]
银行[1]

以上这篇IKAnalyzer结合Lucene实现中文分词(示例讲解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • IKAnalyzer结合Lucene实现中文分词(示例讲解)

    1.基本介绍 随着分词在信息检索领域应用的越来越广泛,分词这门技术对大家并不陌生.对于英文分词处理相对简单,经过拆分单词.排斥停止词.提取词干的过程基本就能实现英文分词,单对于中文分词而言,由于语义的复杂导致分词并没英文分词那么简单,一般都是通过相关的分词工具来实现,目前比较常用的有庖丁分词以及IKAnalyzer等.这里我们主要通过一个简单的Demo聊聊IKAnalyzer的基本使用.IKAnalyzer是一个开源的,基于java开发的分词工具包,它独立于Lucene项目,同时提供了Lucen

  • IKAnalyzer使用不同版本中文分词的切词方式实现相同功能效果

    最近公司在做一个题库的功能,需要用到 中文分词和公式分词的工具,最开始用 IKAnalyzer 2012F 版本 + lunece 6.5.1做了一版中文分词工具. 具体如下: 一.IKAnalyzer 2012F + lunece 6.5.1 实现中文分词 public static List<String> analysisByIK(Analyzer analyzer,String field, String content){ if(StringUtils.isNullOrEmpty(c

  • 几款开源的中文分词系统

    以下介绍4款开源中文分词系统. 1.ICTCLAS – 全球最受欢迎的汉语分词系统 中文词法分析是中文信息处理的基础与关键.中国科学院计算技术研究所在多年研究工作积累的基础上,研制出了汉语词法分析系统ICTCLAS(Institute of Computing Technology, Chinese Lexical Analysis System),主要功能包括中文分词:词性标注:命名实体识别:新词识别:同时支持用户词典:支持繁体中文:支持GBK.UTF-8.UTF-7.UNICODE等多种编码

  • python中文分词,使用结巴分词对python进行分词(实例讲解)

    在采集美女站时,需要对关键词进行分词,最终采用的是python的结巴分词方法. 中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词. 其基本实现原理有三点: 1.基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 2.采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 3.对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 安装(Linux环境) 下载工具包,解压后进入目录下,运行:python set

  • 安装elasticsearch-analysis-ik中文分词器的步骤讲解

    1 安装elasticsearch-analysis-ik中文分词器 Ik介绍:ik是一款中文的分词插件,支持自定义词库. 1.1 下载ik分词器 下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases 下载指定版本的分词器(zip版本) 1.2 解压ik分词器 [es@bigdata1 plugins]$ cd /home/es/ [es@bigdata1 ~]$ ls elasticsearch-6.2.2 jdk1.

  • 基于Java实现中文分词系统的示例代码

    目录 1.问题描述 2.相关工作 3.系统框架和算法设计 3.1系统整体框架 1.问题描述 中文分词 (Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词.分词就是将连续的字序列按照一定的规范重新组合成词序列的过程.我们知道,在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字.句和段能通过明显的分界符来简单划界,唯独词没有一个形式上的分界符,虽然英文也同样存在短语的划分问题,不过在词这一层上,中文比之英文要复杂的多.困难的多. 而对于中文

  • python使用jieba实现中文分词去停用词方法示例

    前言 jieba 基于Python的中文分词工具,安装使用非常方便,直接pip即可,2/3都可以,功能强悍,十分推荐. 中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词. 分词模块jieba,它是python比较好用的分词模块.待分词的字符串可以是 unicode 或 UTF-8 字符串.GBK 字符串.注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 支持三种分词模式 1 精确模式,试图将句子最精确地切开,适合

  • docker 安装solr8.6.2 配置中文分词器的方法

    一.环境版本 Docker version 19.03.12 centos7 solr8.6.2 二.docker安装 1.使用官方安装脚本自动安装 curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 2.使用国内 daocloud 一键安装命令: curl -sSL https://get.daocloud.io/docker | sh 三.docker安装solr8.6.2 1.docker拉取solr doc

  • Python中文分词工具之结巴分词用法实例总结【经典案例】

    本文实例讲述了Python中文分词工具之结巴分词用法.分享给大家供大家参考,具体如下: 结巴分词工具的安装及基本用法,前面的文章<Python结巴中文分词工具使用过程中遇到的问题及解决方法>中已经有所描述.这里要说的内容与实际应用更贴近--从文本中读取中文信息,利用结巴分词工具进行分词及词性标注. 示例代码如下: #coding=utf-8 import jieba import jieba.posseg as pseg import time t1=time.time() f=open(&q

  • iOS中自带超强中文分词器的实现方法

    说明 在处理文本的时候,第一步往往是将字符串进行分词,得到一个个关键词.苹果从很早就开始支持中文分词了,而且我们几乎人人每天都会用到,回想一下,在使用手机时,长按一段文字,往往会选中按住位置的一个词语,这里就是一个分词的绝佳用例,而iOS自带的分词效果非常棒,大家可以自己平常注意观察一下,基本对中文也有很好的效果.而这个功能也开放了API供开发者调用,我试用了一下,很好用! 效果如下: 实现 其实苹果给出了完整的API,想要全面了解的可以直接看文档:CFStringTokenizer Refer

随机推荐