Java中invokedynamic字节码指令问题

1. 方法引用和invokedynamic

invokedynamic是jvm指令集里面最复杂的一条。本文将从高观点的角度下分析invokedynamic指令是如何实现方法引用(Method reference)的。

具体言之,有这样一个方法引用:

interface Encode {
  void encode(Derive person);
}
class Base {
  public void encrypt() {
    System.out.println("Base::speak");
  }
}
class Derive extends Base {
  @Override
  public void encrypt() {
    System.out.println("Derive::speak");
  }
}
public class MethodReference {
  public static void main(String[] args) {
    Encode encode = Base::encrypt;
    System.out.println(encode);
  }
}

使用javap -verbose MethodReference.class查看对应字节码:

// 常量池
Constant pool:
  #1 = Methodref     #6.#22     // java/lang/Object."<init>":()V
  #2 = InvokeDynamic   #0:#27     // #0:encode:()LEncode;
  #3 = Fieldref      #28.#29    // java/lang/System.out:Ljava/io/PrintStream;
  #4 = Methodref     #30.#31    // java/io/PrintStream.println:(Ljava/lang/Object;)V
  #5 = Class       #32      // MethodReference
  #6 = Class       #33      // java/lang/Object
  #7 = Utf8        <init>
  #8 = Utf8        ()V
  #9 = Utf8        Code
 #10 = Utf8        LineNumberTable
 #11 = Utf8        LocalVariableTable
 #12 = Utf8        this
 #13 = Utf8        LMethodReference;
 #14 = Utf8        main
 #15 = Utf8        ([Ljava/lang/String;)V
 #16 = Utf8        args
 #17 = Utf8        [Ljava/lang/String;
 #18 = Utf8        encode
 #19 = Utf8        LEncode;
 #20 = Utf8        SourceFile
 #21 = Utf8        MethodReference.java
 #22 = NameAndType    #7:#8     // "<init>":()V
 #23 = Utf8        BootstrapMethods
 #24 = MethodHandle    #6:#34     // invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;L
java/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang
/invoke/CallSite;
 #25 = MethodType     #35      // (LDerive;)V
 #26 = MethodHandle    #5:#36     // invokevirtual Base.encrypt:()V
 #27 = NameAndType    #18:#37    // encode:()LEncode;
 #28 = Class       #38      // java/lang/System
 #29 = NameAndType    #39:#40    // out:Ljava/io/PrintStream;
 #30 = Class       #41      // java/io/PrintStream
 #31 = NameAndType    #42:#43    // println:(Ljava/lang/Object;)V
 #32 = Utf8        MethodReference
 #33 = Utf8        java/lang/Object
 #34 = Methodref     #44.#45    // java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/Str
ing;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallS
ite;
 #35 = Utf8        (LDerive;)V
 #36 = Methodref     #46.#47    // Base.encrypt:()V
 #37 = Utf8        ()LEncode;
 #38 = Utf8        java/lang/System
 #39 = Utf8        out
 #40 = Utf8        Ljava/io/PrintStream;
 #41 = Utf8        java/io/PrintStream
 #42 = Utf8        println
 #43 = Utf8        (Ljava/lang/Object;)V
 #44 = Class       #48      // java/lang/invoke/LambdaMetafactory
 #45 = NameAndType    #49:#53    // metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Lj
ava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
 #46 = Class       #54      // Base
 #47 = NameAndType    #55:#8     // encrypt:()V
 #48 = Utf8        java/lang/invoke/LambdaMetafactory
 #49 = Utf8        metafactory
// 字节码指令
 public static void main(java.lang.String[]);
   0: invokedynamic #2, 0       // InvokeDynamic #0:encode:()LEncode;
   5: astore_1
   6: getstatic   #3         // Field java/lang/System.out:Ljava/io/PrintStream;
   9: aload_1
  10: invokevirtual #4         // Method java/io/PrintStream.println:(Ljava/lang/Object;)V
  13: return
// 属性
SourceFile: "MethodReference.java"
InnerClasses:
   public static final #51= #50 of #56; //Lookup=class java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles
BootstrapMethods:
 0: #24 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/Method
Type;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
  Method arguments:
   #25 (LDerive;)V
   #26 invokevirtual Base.encrypt:()V
   #25 (LDerive;)V

使用invokedynamic指令生成encode对象,然后存入局部变量槽#1。接着获取getstatic获取java/lang/System类的out字段,最后局部变量槽#1作为参数压栈,invokevirtual虚函数调用System.out的println方法。

那么invokedynamic到底是怎么生成encode对象的呢?

1.虚拟机解析

hotspot对invokedynamic指令的解释如下:

CASE(_invokedynamic): {
    u4 index = Bytes::get_native_u4(pc+1);
    ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
    // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
    // This kind of CP cache entry does not need to match the flags byte, because
    // there is a 1-1 relation between bytecode type and CP entry type.
    if (! cache->is_resolved((Bytecodes::Code) opcode)) {
     CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
         handle_exception);
     cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
    }
    Method* method = cache->f1_as_method();
    if (VerifyOops) method->verify();
    if (cache->has_appendix()) {
     ConstantPool* constants = METHOD->constants();
     SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
     MORE_STACK(1);
    }
    istate->set_msg(call_method);
    istate->set_callee(method);
    istate->set_callee_entry_point(method->from_interpreted_entry());
    istate->set_bcp_advance(5);
    // Invokedynamic has got a call counter, just like an invokestatic -> increment!
    BI_PROFILE_UPDATE_CALL();
    UPDATE_PC_AND_RETURN(0); // I'll be back...
   }

使用invokedynamic_cp_cache_entry_at获取常量池对象,然后检查是否已经解析过,如果没有就解析反之复用,然后设置方法字节码,留待后面解释执行。那么,重点是这个解析。我们对照着jvm spec来看。

根据jvm文档的描述,invokedynamic的操作数(operand)指向常量池一个动态调用点描述符(dynamic call site specifier)。

动态调用点描述符是一个CONSTANT_InvokeDynamic_info结构体:

CONSTANT_InvokeDynamic_info {
 u1 tag;
 u2 bootstrap_method_attr_index;
 u2 name_and_type_index;
}

•tag 表示这个结构体的常量,不用管
•bootstrap_method_attr_index 启动方法数组
•name_and_type_index 一个名字+类型的描述字段,就像这样Object p放到虚拟机里面表示是Ljava/lang/Object; p

然后启动方法数组结构是这样:

BootstrapMethods_attribute {
 ...
 u2 num_bootstrap_methods;
 {
 u2 bootstrap_method_ref;
 u2 num_bootstrap_arguments;
 u2 bootstrap_arguments[num_boot]
 } bootstrap_methods[num_bootstrap_methods];
}

就是一个数组,每个元素是{指向MethodHandle的索引,启动方法参数个数,启动方法参数}

MethodlHandle是个非常重要的结构,指导了虚拟机对于这个启动方法的解析,先关注一下这个结构:

CONSTANT_MethodHandle_info {
 u1 tag;//表示该结构体的常量tag,可以忽略
 u1 reference_kind;
 u2 reference_index;
}

•reference_kind是[1,9]的数,它表示这个method handle的类型,这个字段和字节码的行为有关。
•reference_index 根据reference_kind会指向常量池的不同类型,具体来说 ◦reference_kind==1,3,4 指向CONSTANT_Fieldref_info结构,表示一个类的字段
◦reference_kind==5,8,指向CONSTANT_Methodref_info,表示一个类的方法
◦reference_kind==6,7, 同上,只是兼具接口的方法或者类的方法的可能。
◦reference_kind==9,指向CONSTATN_InterfaceMethodref_info,表示一个接口方法

通过invokedynamic,我们可以得

1.名字+描述符的表示(由name_and_type_index给出)

2.一个启动方法数组(由bootstrap_method_attr_index给出)

2.手动解析

可以手动模拟一下解析,看看最后得到的数据是什么样的。在这个例子中:

  0: invokedynamic #2,  0   //第二个operand总是0

查看常量池#2项:

#2 = InvokeDynamic   #0:#27     // #0:encode:()LEncode;
#27 = NameAndType    #18:#37    // encode:()LEncode;

BootstrapMethods:
 0: #24 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/Method
Type;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
  Method arguments:
   #25 (LDerive;)V
   #26 invokevirtual Base.encrypt:()V
   #25 (LDerive;)V

得到的名字+描述符是:Encode.encode(),启动方法数组有一个元素,回忆下之前说的,这个元素构成如下:

{指向MethodHandle的索引,启动方法参数个数,启动方法参数}

这里得到的MethodHandle表示的是LambdaMetafactory.metafactory:

#24 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/Method
Type;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;`

启动方法参数有:

•#25 (LDerive;)V
•#26 invokevirtual Base.encrypt:()V
•#25 (LDerive;)V

3. java.lang.invoke.LambdaMetafactory

先说说LambdaMetafactory有什么用。javadoc给出的解释是:

Facilitates the creation of simple "function objects" that implement one or more interfaces by delegation to a provided MethodHandle, after appropriate type adaptation and partial evaluation of arguments. Typically used as a bootstrap method for invokedynamic call sites, to support the lambda expression and method reference expression features of the Java Programming Language.
 When the target of the CallSite returned from this method is invoked, the resulting function objects are instances of a class which implements the interface named by the return type of invokedType, declares a method with the name given by invokedName and the signature given by samMethodType. It may also override additional methods from Object.

LambdaMetafactory方便我们创建简单的"函数对象",这些函数对象通过代理MethodHandle实现了一些接口。

当这个函数返回的CallSite被调用的时候,会产生一个类的实例,该类还实现了一些方法,具体由参数给出

将上面得到的MethodHandle写得更可读就是调用的这个方法:

public static CallSite LambdaMetafactory.metafactory(MethodHandles.Lookup caller,
                    String invokedName,
                    MethodType invokedType,
                    MethodType samMethodType,
                    MethodHandle implMethod,
                    MethodType instantiatedMethodType);

六个参数,慢慢来。

3.1 LambdaMetafactory.metafactory()调用前

要知道参数是什么意思,可以从它的调用者来管中窥豹:

static CallSite makeSite(MethodHandle bootstrapMethod,
               // Callee information:
               String name, MethodType type,
               // Extra arguments for BSM, if any:
               Object info,
               // Caller information:
               Class<?> callerClass) {
    MethodHandles.Lookup caller = IMPL_LOOKUP.in(callerClass);
    CallSite site;
    try {
      Object binding;
      info = maybeReBox(info);
      if (info == null) {
        binding = bootstrapMethod.invoke(caller, name, type);
      } else if (!info.getClass().isArray()) {
        binding = bootstrapMethod.invoke(caller, name, type, info);
      } else {
        Object[] argv = (Object[]) info;
        maybeReBoxElements(argv);
        switch (argv.length) {
        ...
        case 3:
          binding = bootstrapMethod.invoke(caller, name, type,
                           argv[0], argv[1], argv[2]);
          break;
        ...
        }
      }
      //System.out.println("BSM for "+name+type+" => "+binding);
      if (binding instanceof CallSite) {
        site = (CallSite) binding;
      } else {
        throw new ClassCastException("bootstrap method failed to produce a CallSite");
      }
      ...
    } catch (Throwable ex) {
      ...
    }
    return site;
  }

对java.lang.invoke.LambdaMetafactory的调用是通过MethodHandle引发的,所以可能还需要补一下MethodHandle的用法,百度一搜一大堆,javadoc也给出了使用示例:

String s;
MethodType mt; MethodHandle mh;
MethodHandles.Lookup lookup = MethodHandles.lookup();
// mt is (char,char)String
mt = MethodType.methodType(String.class, char.class, char.class);
mh = lookup.findVirtual(String.class, "replace", mt);
s = (String) mh.invoke("daddy",'d','n');
// invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
assertEquals(s, "nanny");

回到源码,关键是这句:

binding = bootstrapMethod.invoke(caller, name, type,
                argv[0], argv[1], argv[2]);

argv[0],argv[1],argv[2]分别表示之前启动方法的三个参数,

caller即调用者,这里是MethodReference这个类,然后name和type参见下面的详细解释:

•MethodHandles.Lookup caller 表示哪个类引发了调动
•String invokedName 表示生成的类的方法名,对应例子的encode
•MethodType invokedType 表示CallSite的函数签名,其中参数类型表示捕获变量的类型,返回类型是类要实现的接口的名字,对应例子的()Encode,即要生成一个类,这个类没有捕获自由变量(所以参数类为空),然后这个类要实现Encode接口(返回类型为生成的类要实现的接口)

接下来

•MethodType samMethodType 表示要实现的方法的函数签名和返回值,对于例子的#25 (LDerive;)V,即实现方法带有一个形参,返回void
•MethodHandle implMethod 表示实现的方法里面应该调用的函数,对于例子的#26 invokevirtual Base.encrypt:()V,表示调用Base的虚函数encrypt,返回void
•MethodType instantiatedMethodType 表示调用方法的运行时描述符,如果不是泛型就和samMethodType一样

3.2 LambdaMetafactory.metafactory()调用

源码面前,不是了无秘密吗hhh,点进源码看看这个LambdaMetafactory到底做了什么:

 */
  public static CallSite metafactory(MethodHandles.Lookup caller,
                    String invokedName,
                    MethodType invokedType,
                    MethodType samMethodType,
                    MethodHandle implMethod,
                    MethodType instantiatedMethodType)
      throws LambdaConversionException {
    AbstractValidatingLambdaMetafactory mf;
    mf = new InnerClassLambdaMetafactory(caller, invokedType,
                       invokedName, samMethodType,
                       implMethod, instantiatedMethodType,
                       false, EMPTY_CLASS_ARRAY, EMPTY_MT_ARRAY);
    mf.validateMetafactoryArgs();
    return mf.buildCallSite();
  }

它什么也没做,做事的是InnerClassLambdaMetafactory.buildCallSite()创建的最后CallSite,那就进一步看看InnerClassLambdaMetafactory.buildCallSite():

 @Override
  CallSite buildCallSite() throws LambdaConversionException {
    // 1. 创建生成的类对象
    final Class<?> innerClass = spinInnerClass();
    if (invokedType.parameterCount() == 0) {
      // 2. 用反射获取构造函数
      final Constructor<?>[] ctrs = AccessController.doPrivileged(
          new PrivilegedAction<Constructor<?>[]>() {
        @Override
        public Constructor<?>[] run() {
          Constructor<?>[] ctrs = innerClass.getDeclaredConstructors();
          if (ctrs.length == 1) {
            // The lambda implementing inner class constructor is private, set
            // it accessible (by us) before creating the constant sole instance
            ctrs[0].setAccessible(true);
          }
          return ctrs;
        }
          });
      if (ctrs.length != 1) {
        throw new LambdaConversionException("Expected one lambda constructor for "
            + innerClass.getCanonicalName() + ", got " + ctrs.length);
      }

      try {
        // 3. 创建实例
        Object inst = ctrs[0].newInstance();
        // 4. 根据实例和samBase(接口类型)生成MethodHandle
        // 5. 生成ConstantCallSite
        return new ConstantCallSite(MethodHandles.constant(samBase, inst));
      }
      catch (ReflectiveOperationException e) {
        throw new LambdaConversionException("Exception instantiating lambda object", e);
      }
    } else {
      try {
        UNSAFE.ensureClassInitialized(innerClass);
        return new ConstantCallSite(
            MethodHandles.Lookup.IMPL_LOOKUP
               .findStatic(innerClass, NAME_FACTORY, invokedType));
      }
      catch (ReflectiveOperationException e) {
        throw new LambdaConversionException("Exception finding constructor", e);
      }
    }
  }

首先它生成一个.class文件,虚拟机默认不会输出,需要下面设置VM option-Djdk.internal.lambda.dumpProxyClasses=.,Dump出虚拟机生成的类我得到的是:

import java.lang.invoke.LambdaForm.Hidden;
// $FF: synthetic class
final class MethodReference$$Lambda$1 implements Encode {
  private MethodReference$$Lambda$1() {
  }
  @Hidden
  public void encode(Derive var1) {
    ((Base)var1).encrypt();
  }
}

该类实现了传来的接口函数(动态类生成,熟悉spring的朋友应该很熟悉)。

回到buildCallSite()源码,它使用MethodHandles.constant(samBase, inst)创建MethdHandle,放到CallSite里面,完成整个LambdaMetafactory的工作。

MethodHandles.constant(samBase, inst)相当于一个总是返回inst的方法。

总结

到这里就结束了整个流程,文章有点长,总结一下:

1.虚拟机遇到invokedynamic,开始解析操作数
2.根据invokedynamic #0:#27获取到启动方法(#0)和一个名字+描述符(#27)

其中启动方法是

BootstrapMethods:
 0: #24 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/Method
Type;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
  Method arguments:
   #25 (LDerive;)V
   #26 invokevirtual Base.encrypt:()V
   #25 (LDerive;)V

名字+描述符是

#27 = NameAndType        #18:#37        // encode:()LEncode;

1.启动方法指向LambdaMetafactory.metafactory,但是不会直接调用而是通过MethdHandle间接调用。调用位置位于CallSite.makeCallSite()
2.LambdaMetafactory.metafactory()其实使用InnerClassLambdaMetafactory.buildCallSite()创建了最后的CallSite
3.buildCallSite()会创建一个.class,
4.buildCallSite()会向最后的CallSite里面放入一个可调用的MethdHandle
5.这个MethodHandle指向的是一个总是返回刚刚创建的.class类的实例的方法,由MethodHandles.constant(samBase, inst)完成
6.最后,用invokevirtual调用CallSite里面的MethdHandle,返回.class类的示例,即inst,即new MethodReference$$Lambda$1

总结

以上所述是小编给大家介绍的Java中invokedynamic字节码指令问题,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • Java字节码指令集的使用详细

    Java虚拟机指令由一个字节长度的.代表某种特定含义的操作码(Opcode)以及其后的零个至多个代表此操作参数的操作数构成.虚拟机中许多指令并不包含操作数,只有一个操作码.若忽略异常,JVM解释器使用一下为代码即可有效工作. 复制代码 代码如下: do{    自动计算PC寄存器以及从PC寄存器的位置取出操作码    if(存在操作数) 取出操作数;    执行操作码所定义的操作;}while(处理下一次循环) 操作数的数量以及长度,取决于操作码,若一个操作数长度超过了一个字节,将会以Big-E

  • java字节码框架ASM的深入学习

    一.什么是ASM ASM是一个java字节码操纵框架,它能被用来动态生成类或者增强既有类的功能.ASM 可以直接产生二进制 class 文件,也可以在类被加载入 Java 虚拟机之前动态改变类行为.Java class 被存储在严格格式定义的 .class文件里,这些类文件拥有足够的元数据来解析类中的所有元素:类名称.方法.属性以及 Java 字节码(指令).ASM从类文件中读入信息后,能够改变类行为,分析类信息,甚至能够根据用户要求生成新类. 使用ASM框架需要导入asm的jar包,下载链接:

  • java 获取字节码文件的几种方法总结

    java 获取字节码文件的几种方法总结 在本文中,以Person类为例,将分别演示获取该类字节码文件的三种方式, 其具体思想及代码如下所示: public class Person { private int age; private String name; public Person() { System.out.println("person run"); } public Person(String name, int age) { this.age = age; this.n

  • java字节码框架ASM操作字节码的方法浅析

    之前我们已经对ASM进行的详细的介绍,需要的朋友们可以点击这里:java字节码框架ASM的深入学习 JVM的类型签名对照表 Type Signature Java Type Z boolean B byte C char S short I int J long F float D double L fully-qualified-class ;fully-qualified-class [ type type[] ( arg-types ) ret-type method type 比如,ja

  • java 中如何获取字节码文件的相关内容

    java 中如何获取字节码文件的相关内容 反射机制是指在运行状态中,对任意一个类(class文件),都能知道这个类的所有属性和方法:对任意一个对象,都能调用这个对象的方法和属性.这种动态的获取信息和动态的调用对象的方法的功能称为--Java语言的反射机制. 简单点说,动态的获取类中的信息,这就是Java的反射机制. 在Java的反射机制中,我们可以通过配置文件信息,然后通过类名来获取类中包含的详细信息,如构造函数.成员变量和成员函数等.在接下来,作者将分别演示如何通过类名来获取类中包含的信息.

  • Java 将字符串动态生成字节码的实现方法

    可以生成可执行的class文件 直接上能执行代码: 复制代码 代码如下: public class Test { /**  * @param args  */@SuppressWarnings("static-access")public static void main(String[] args) {  try {   new Test().calculate("234 - ( 1 + 45 * 4 ) / 5");  } catch (Exception e)

  • Java中invokedynamic字节码指令问题

    1. 方法引用和invokedynamic invokedynamic是jvm指令集里面最复杂的一条.本文将从高观点的角度下分析invokedynamic指令是如何实现方法引用(Method reference)的. 具体言之,有这样一个方法引用: interface Encode { void encode(Derive person); } class Base { public void encrypt() { System.out.println("Base::speak");

  • 详解Java中的字节码增强技术

    目录 1.字节码增强技术 2.常见技术 3.ASM 3.1 测试 Main 3.2 测试 CustomerClassVisitor 3.3 测试 Test 1.字节码增强技术 字节码增强技术就是一类对现有字节码进行修改或者动态生成全新字节码文件的技术. 参考地址 2.常见技术 技术分类 类型 静态增强 AspectJ 动态增强 ASM.Javassist.Cglib.Java Proxy 3.ASM <dependency> <groupId>org.ow2.asm</gro

  • 学会Java字节码指令,成为技术大佬

    目录 01.加载与存储指令 1)将局部变量表中的变量压入操作数栈中 2)将常量池中的常量压入操作数栈中 3)将栈顶的数据出栈并装入局部变量表中 02.算术指令 1)创建指令 2)字段访问指令 1)比较指令 2)条件跳转指令 3)比较条件转指令 4)多条件分支跳转指令 5)无条件跳转指令 Java 官方的虚拟机 Hotspot 是基于栈的,而不是基于寄存器的. 基于栈的优点是可移植性更好.指令更短.实现起来简单,但不能随机访问栈中的元素,完成相同功能所需要的指令数也比寄存器的要多,需要频繁的入栈和

  • java 中Buffer源码的分析

    java 中Buffer源码的分析 Buffer Buffer的类图如下: 除了Boolean,其他基本数据类型都有对应的Buffer,但是只有ByteBuffer才能和Channel交互.只有ByteBuffer才能产生Direct的buffer,其他数据类型的Buffer只能产生Heap类型的Buffer.ByteBuffer可以产生其他数据类型的视图Buffer,如果ByteBuffer本身是Direct的,则产生的各视图Buffer也是Direct的. Direct和Heap类型Buff

  • Java 中模仿源码自定义ArrayList

    Java 中模仿源码自定义ArrayList 最近看了下ArrayList的源码,抽空根据ArrayList的底层结构写了一个功能简单无泛型的自定义ArrayLsit,帮助自己更好理解ArrayList:,其实现的底层数据结构为数Object组,代码如下: /** * 自己实现一个ArrayList * */ public class MyArrayList { private Object[] elementData; private int size; public int size(){

  • java中CopyOnWriteArrayList源码解析

    目录 简介 继承体系 源码解析 属性 构造方法 add(Ee)方法 add(intindex,Eelement)方法 addIfAbsent(Ee)方法 get(intindex) remove(intindex)方法 size()方法 提问 总结 简介 CopyOnWriteArrayList是ArrayList的线程安全版本,内部也是通过数组实现,每次对数组的修改都完全拷贝一份新的数组来修改,修改完了再替换掉老数组,这样保证了只阻塞写操作,不阻塞读操作,实现读写分离. 继承体系 public

  • 深入Python解释器理解Python中的字节码

    我最近在参与Python字节码相关的工作,想与大家分享一些这方面的经验.更准确的说,我正在参与2.6到2.7版本的CPython解释器字节码的工作. Python是一门动态语言,在命令行工具下运行时,本质上执行了下面的步骤: 当第一次执行到一段代码时,这段代码会被编译(如,作为一个模块加载,或者直接执行).根据操作系统的不同,这一步生成后缀名是pyc或者pyo的二进制文件. 解释器读取二进制文件,并依次执行指令(opcodes). Python解释器是基于栈的.要理解数据流向,我们需要知道每条指

  • Java中的字节,字符输出流与字节和字符输入流的简单理解

    目录 字节输出流OutputStream 字符输出流 字节输入流InputStream 字符输入流Reader 字节流和字符流的区别 总结 我先解释一下什么叫IO流: I:指的是InputStream,这是一个抽象类,最常用的子类是FileInputStream O:值得是OutputStream,这也是一个抽象类,最常用的子类是OutputStream 流:由于在进行文件操作的时候大多数是用的byte数据,这些数据并不是一次性写入(读取),而是像水龙头那样慢慢的流(想象一下你接水的场景) 废话

  • 图文详解Java中的字节输入与输出流

    目录 字节输入流 字节输入流结构图 FileInputStream类 构造方法: 常用读取方法: 字节输出流 字节输出流结构图: FileOutputStream类 构造方法: 常用写入方法: 总结 字节输入流 java.io.InputStream抽象类是所有字节输入流的超类,将数据从文件中读取出来. 字节输入流结构图 在Java中针对文件的读写操作有一些流,其中介绍最常见的字节输入流. FileInputStream类 FileInputStream流被称为字节输入流,对文件以字节的形式读取

  • 详解Java中ByteArray字节数组的输入输出流的用法

    ByteArrayInputStream 介绍 ByteArrayInputStream 是字节数组输入流.它继承于InputStream. 它包含一个内部缓冲区,该缓冲区包含从流中读取的字节:通俗点说,它的内部缓冲区就是一个字节数组,而ByteArrayInputStream本质就是通过字节数组来实现的. 我们都知道,InputStream通过read()向外提供接口,供它们来读取字节数据:而ByteArrayInputStream 的内部额外的定义了一个计数器,它被用来跟踪 read() 方

随机推荐