python 处理dataframe中的时间字段方法

在机器学习过程中,通常会通过pandas读取csv文件,保持成dadaframe格式,然而有时候需要对dataframe中的时间字段进行数据建模,比如时间格式为datetime,那么像一般操作dataframe的方式来操作时间字段会报错的,所以在使用sklearn库进行fit和predict的时候,通常要把时间字段首先转换为timestamp格式,在fit和predict之后,如果需要matplotlib绘图的时候,再把timestamp格式转换为时间字符串,比如2017-02-01 14:25:14。

下面是我处理过的一段代码,希望可以帮到童鞋们!

doc_list1 = []
for i in doc1.iloc[:,1:2].values.tolist():        # 转换成了时间戳格式
  for j in i:
    dt = time.strptime(j, "%Y-%m-%d %H:%M:%S")
    dt_new = time.mktime(dt)
    doc_list1.append(dt_new)

doc_list2 = []
for i in doc_list1:
  time_local = time.localtime(i)
  dt = time.strftime("%Y-%m-%d %H:%M:%S",time_local)
  dt1 = datetime.datetime.strptime(dt, "%Y-%m-%d %H:%M:%S")
  doc_list2.append(dt1)
X1 = np.mat(doc_list1).T
y1= test_target1001
clf = AdaBoostRegressor(DecisionTreeRegressor(max_depth=5),n_estimators=1000, random_state=rng)
clf.fit(X1,y1)
yhat1 = clf.predict(X1)

补充一下:如果value不是datetime格式还需要进行转换

value = result.iloc[:,1]
list = []
for i in value:
    print(type(i.to_pydatetime().timetuple()),i)
    list.append(time.mktime(i.to_datetime().timetuple()))
print(list)

以上这篇python 处理dataframe中的时间字段方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python中datetime常用时间处理方法
  • pandas中的DataFrame按指定顺序输出所有列的方法
  • python DataFrame 修改列的顺序实例
  • 在pandas中一次性删除dataframe的多个列方法
  • python读取文本中数据并转化为DataFrame的实例
(0)

相关推荐

  • python读取文本中数据并转化为DataFrame的实例

    在技术问答中看到一个这样的问题,感觉相对比较常见,就单开一篇文章写下来. 从纯文本格式文件 "file_in"中读取数据,格式如下: 需要输出成"file_out",格式如下: 数据的原格式是"类别:内容",以空行"\n"为分条目,转换后变成一个条目一行,按照类别顺序依次写出内容. 建议读取后,使用pandas,把数据建立称DataFrame的表格.这样方便以后处理数据.但是原格式并不是通常的表格格式,所以要先做一些简单的处理

  • pandas中的DataFrame按指定顺序输出所有列的方法

    问题: 输出新建的DataFrame对象时,DataFrame中各列的显示顺序和DataFrame定义中的顺序不一致. 例如: import pandas as pd grades = [48,99,75,80,42,80,72,68,36,78] df = pd.DataFrame( {'ID': ["x%d" % r for r in range(10)], 'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],

  • 在pandas中一次性删除dataframe的多个列方法

    之前沉迷于使用index删除,然而发现pandas貌似有bug? import pandas as pd import numpy as np df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) x=[1,2] df.drop(index=[1,2], axis=1, inplace=True) #axis=1,试图指定列,然并卵 print df 输出为 A B C D 0 0 1 2 3 还是

  • Python中datetime常用时间处理方法

    常用时间转换及处理函数: import datetime # 获取当前时间 d1 = datetime.datetime.now() print d1 # 当前时间加上半小时 d2 = d1 + datetime.timedelta(hours=0.5) print d2 # 格式化字符串输出 d3 = d2.strftime('%Y-%m-%d %H:%M:%S') print d3 # 将字符串转化为时间类型 d4 = datetime.datetime.strptime(date,'%Y-

  • python DataFrame 修改列的顺序实例

    假设我有一个DataFrame(df)如下: name age id mike 10 1 tony 14 2 lee 20 3 现在我想把id 放到最前面,变成: id name age df_id = df.id df = df.drop('id',axis=1) df.insert(0,'id',df_id) 以上这篇python DataFrame 修改列的顺序实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python中datet

  • python 处理dataframe中的时间字段方法

    在机器学习过程中,通常会通过pandas读取csv文件,保持成dadaframe格式,然而有时候需要对dataframe中的时间字段进行数据建模,比如时间格式为datetime,那么像一般操作dataframe的方式来操作时间字段会报错的,所以在使用sklearn库进行fit和predict的时候,通常要把时间字段首先转换为timestamp格式,在fit和predict之后,如果需要matplotlib绘图的时候,再把timestamp格式转换为时间字符串,比如2017-02-01 14:25

  • 使用Python向DataFrame中指定位置添加一列或多列的方法

    对于这个问题,相信很多人都会很困惑,本篇文章将会给大家介绍一种非常简单的方式向DataFrame中任意指定的位置添加一列. 在此之前或许有不少读者已经了解了最普通的添加一列的方式,如下: import pandas as pd feature = pd.read_csv("C://Users//Machenike//Desktop//xzw//lr_train_data.txt", delimiter="\t", header=None, usecols=[0, 1

  • Python正则表达式匹配日期与时间的方法

    下面给大家介绍下Python正则表达式匹配日期与时间 #!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Randy' import re from datetime import datetime test_date = '他的生日是2016-12-12 14:34,是个可爱的小宝贝.二宝的生日是2016-12-21 11:34,好可爱的.' test_datetime = '他的生日是2016-12-12 14:34,是个可

  • 数据清洗--DataFrame中的空值处理方法

    数据清洗是一项复杂且繁琐的工作,同时也是整个数据分析过程中最为重要的环节. 在python中空值被显示为NaN.首先,我们要构造一个包含NaN的DataFrame对象. >>> import numpy as np >>> import pandas as pd >>> from pandas import Series,DataFrame >>> from numpy import nan as NaN >>> d

  • 利用python在excel中画图的实现方法

    一.前言 以前大学时候,学EXCEL看到N多大神利用excel画图,觉得很不可思议.今个学了一个来月python,膨胀了就想用excel画图.当然,其实用画图这个词不甚严谨,实际上是利用opencv遍历每一个像素的rgb值,再将其转化为16进制,最后调用openpyxl进行填充即可. 1.1.实现效果 效果如下图 1.2.需要用到的库的安装 需要用到库如下: import cv2 #导入OpenCV库 import xlsxwriter #利用这个调整行高列宽 import openpyxl #

  • Python pandas库中isnull函数使用方法

    前言: python的pandas库中有⼀个⼗分便利的isnull()函数,它可以⽤来判断缺失值,我们通过⼏个例⼦学习它的使⽤⽅法.⾸先我们创建⼀个dataframe,其中有⼀些数据为缺失值. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(10,99,size=(10,5))) df.iloc[4:6,0] = np.nan df.iloc[5:7,2] = np.nan df.iloc[7,

  • Python读取mp3中ID3信息的方法

    本文实例讲述了Python读取mp3中ID3信息的方法.分享给大家供大家参考.具体分析如下: pyid3不好用,常常有不认识的. mutagen不错,不过默认带的easyid3不会读取注释,需要手工hack一下 Python代码如下: from mutagen.mp3 import MP3 import mutagen.id3 from mutagen.easyid3 import EasyID3 EasyID3.valid_keys["comment"]="COMM::'X

  • Python去除列表中重复元素的方法

    本文实例讲述了Python去除列表中重复元素的方法.分享给大家供大家参考.具体如下: 比较容易记忆的是用内置的set l1 = ['b','c','d','b','c','a','a'] l2 = list(set(l1)) print l2 还有一种据说速度更快的,没测试过两者的速度差别 l1 = ['b','c','d','b','c','a','a'] l2 = {}.fromkeys(l1).keys() print l2 这两种都有个缺点,祛除重复元素后排序变了: ['a', 'c',

  • python删除列表中重复记录的方法

    本文实例讲述了python删除列表中重复记录的方法.分享给大家供大家参考.具体实现方法如下: def removeListDuplicates(seq): seen = set() seen_add = seen.add return [ x for x in seq if x not in seen and not seen_add(x) ] 希望本文所述对大家的Python程序设计有所帮助.

  • Python解析xml中dom元素的方法

    本文实例讲述了Python解析xml中dom元素的方法.分享给大家供大家参考.具体实现方法如下: 复制代码 代码如下: from xml.dom import minidom try:     xmlfile = open("path.xml", "a+")     #xmldoc = minidom.parse( sys.argv[1])     xmldoc = minidom.parse(xmlfile) except :     #updatelogger.

随机推荐