Python+matplotlib绘制不同大小和颜色散点图实例
具有不同标记颜色和大小的散点图演示。
演示结果:
实现代码:
import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory. The record array # stores the date as an np.datetime64 with a day unit ('D') in the date column. with cbook.get_sample_data('goog.npz') as datafile: price_data = np.load(datafile)['price_data'].view(np.recarray) price_data = price_data[-250:] # get the most recent 250 trading days delta1 = np.diff(price_data.adj_close) / price_data.adj_close[:-1] # Marker size in units of points^2 volume = (15 * price_data.volume[:-2] / price_data.volume[0])**2 close = 0.003 * price_data.close[:-2] / 0.003 * price_data.open[:-2] fig, ax = plt.subplots() ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.5) ax.set_xlabel(r'$\Delta_i$', fontsize=15) ax.set_ylabel(r'$\Delta_{i+1}$', fontsize=15) ax.set_title('Volume and percent change') ax.grid(True) fig.tight_layout() plt.show()
总结
以上就是本文关于Python+matplotlib绘制不同大小和颜色散点图实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
您可能感兴趣的文章:
- python+matplotlib绘制3D条形图实例代码
- Python使用matplotlib填充图形指定区域代码示例
- python+matplotlib实现礼盒柱状图实例代码
- Python+matplotlib实现填充螺旋实例
- python+matplotlib实现鼠标移动三角形高亮及索引显示
- python+matplotlib演示电偶极子实例代码
- python+matplotlib绘制旋转椭圆实例代码
- Python+matplotlib实现计算两个信号的交叉谱密度实例
相关推荐
-
Python使用matplotlib填充图形指定区域代码示例
本文代码重点在于演示Python扩展库matplotlib.pyplot中fill_between()函数的用法. import numpy as np import matplotlib.pyplot as plt # 生成模拟数据 x = np.arange(0.0, 4.0*np.pi, 0.01) y = np.sin(x) # 绘制正弦曲线 plt.plot(x, y) # 绘制基准水平直线 plt.plot((x.min(),x.max()), (0,0)) # 设置坐标轴标签 pl
-
python+matplotlib绘制3D条形图实例代码
本文分享的实例主要实现的是Python+matplotlib绘制一个有阴影和没有阴影的3D条形图,具体如下. 首先看看演示效果: 完整代码如下: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # setup the figure and axes fig = plt.figure(figsize=(8, 3)) ax1 = fig.add_subplot(121
-
python+matplotlib绘制旋转椭圆实例代码
旋转椭圆 实例代码: import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Ellipse delta = 45.0 # degrees angles = np.arange(0, 360 + delta, delta) ells = [Ellipse((1, 1), 4, 2, a) for a in angles] a = plt.subplot(111, aspect='equal
-
python+matplotlib实现鼠标移动三角形高亮及索引显示
Trifinder事件实例 实例展示Trifinder对象对的使用.当鼠标移动到一个被分割的三角形上,这个三角形高亮显示,并且它的标签在图标题显示. 展示下演示结果: 完整代码: import matplotlib.pyplot as plt from matplotlib.tri import Triangulation from matplotlib.patches import Polygon import numpy as np def update_polygon(tri): if t
-
python+matplotlib演示电偶极子实例代码
使用matplotlib.tri.CubicTriInterpolator.演示变化率计算: 完整实例: from matplotlib.tri import ( Triangulation, UniformTriRefiner, CubicTriInterpolator) import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np #---------------------------------
-
Python+matplotlib实现计算两个信号的交叉谱密度实例
计算两个信号的交叉谱密度 结果展示: 完整代码: import numpy as np import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(2, 1) # make a little extra space between the subplots fig.subplots_adjust(hspace=0.5) dt = 0.01 t = np.arange(0, 30, dt) # Fixing random stat
-
python+matplotlib实现礼盒柱状图实例代码
演示结果: 完整代码: import matplotlib.pyplot as plt import numpy as np from matplotlib.image import BboxImage from matplotlib._png import read_png import matplotlib.colors from matplotlib.cbook import get_sample_data class RibbonBox(object): original_image =
-
Python+matplotlib实现填充螺旋实例
填充螺旋演示结果: 实例代码: import matplotlib.pyplot as plt import numpy as np theta = np.arange(0, 8*np.pi, 0.1) a = 1 b = .2 for dt in np.arange(0, 2*np.pi, np.pi/2.0): x = a*np.cos(theta + dt)*np.exp(b*theta) y = a*np.sin(theta + dt)*np.exp(b*theta) dt = dt +
-
Python+matplotlib绘制不同大小和颜色散点图实例
具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory
-
python matplotlib:plt.scatter() 大小和颜色参数详解
语法 plt.scatter(x, y, s=20, c='b') 大小s默认为20,s=0时点不显示:颜色c默认为蓝色. 为每一个点指定大小和颜色 有时我们需要为每一个点指定大小和方向,以区分不同的点.这时,可以向s和c传入列表.如: import matplotlib.pyplot as plt import numpy as np x = list(range(1, 7)) plt.scatter(x, x, s=10*np.array(x)**2, c=x) plt.show() 参数s
-
python+matplotlib绘制饼图散点图实例代码
本文是从matplotlib官网上摘录下来的一个实例,实现的功能是Python+matplotlib绘制自定义饼图作为散点图的标记,具体如下. 首先看下演示效果 实例代码: import numpy as np import matplotlib.pyplot as plt # first define the ratios r1 = 0.2 # 20% r2 = r1 + 0.4 # 40% # define some sizes of the scatter marker sizes = n
-
Python matplotlib绘制散点图的实例代码
前言 前面说到的主要是matplotlib对于图像的基础操作,然后从这篇开始,主要说一下点图,分析点图在实际问题的数据处理中应用非常广泛,比如说逻辑回归是利用现有的数据点通过拟合得到一定的函数关系,甚至生活中,物体运动的轨迹,也可以看做是连续的点绘制而成,还有图像,也是很多个像素点堆砌而成的,在图像处理中经常会针对单个像素点进行处理. 现在的深度学习或者机器学习,模型都是固定的,大多 不需要怎么改动,而能提升训练效果的,最重要的就是能更好的处理数据,而很多数据本身就是点集,利用matplotli
-
Python matplotlib 绘制散点图详解建议收藏
目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示 2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细
-
Python matplotlib 绘制散点图详解建议收藏
目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示 2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 往期内容速看 Python用 matplotlib 绘制柱状图 Python matplotlib底层
-
Python matplotlib绘制散点图配置(万能模板案例)
目录 散点图 散点图一行代码显示 加颜色的散点图 颜色深浅表示数值大小 散点图显示颜色和大小 自定义图表散点图 散点图万能模板 其他模板 散点图 散点图是指在 回归分析中,数据点在直角坐标系平面上的 分布图,散点图表示因变量随 自变量而 变化的大致趋势,据此可以选择合适的函数 对数据点进行 拟合. 用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式.散点图将序列显示为一组点.值由点在 图表中的位置表示.类别由图表中的不同标记表示.散点图通常用于比较跨
-
Python matplotlib绘制灰度和彩色直方图
目录 一.Matplotlib.Pyplot简介 1.Matplotlib 2.Pyplot 二.灰度直方图 1.主要函数 2.实现代码 3.效果示例 三.彩色直方图 1.实现代码 2.效果示例 一.Matplotlib.Pyplot简介 1.Matplotlib Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式. Matplotlib 可以用来绘制各种静态,动态,交互式的图表. Matplotlib 是一个非常强大的 Python 画
-
利用Python matplotlib绘制风能玫瑰图
概述 在之前的风资源分析文章中,有提到过用widrose包来进行玫瑰图的绘制,目前的可视化绘图包有很多,但是最基础和底层的,本人认为还是matplotlib,有时候为了画1-2个图就去安装一个包,好麻烦,我就是个安装软件的渣渣,所以,推己及人,我也研究了一下,matplotlib画玫瑰图的方法,废话不多说,开始咯~~~ 风能玫瑰图 玫瑰图是气象科学专业统计图表,用来统计某个地区一段时期内风向.风速发生频率,又分为"风向玫瑰图"和"风速玫瑰图".本文中的玫瑰图是将风速
-
Python+Matplotlib绘制3D图像的示例详解
目录 1. 绘制3D柱状图 2. 绘制3D曲面图 示例1 示例2 3.绘制3D散点图 4. 绘制3D曲线图 1. 绘制3D柱状图 绘制3D柱状图使用的是axes3d.bar()方法. 可能跟我们中学学的有一点不同的是,其语法如下: bar(left, height, zs=0, zdir=‘z’, *args, **kwargs) 其中left表示指向侧边的轴,zs表示指向我们的方向的轴,height即表示高度的轴.这三者都需要是一维的序列对象.在调用相关方法的时候,比如设置轴标签,还有一点需要
随机推荐
- jquery一键控制checkbox全选、反选或全不选
- SQL判断字段列是否存在的方法
- Oracle 数据库特殊查询总结
- python字符串编码识别模块chardet简单应用
- VMware vSphere所需要开放的端口清单
- 微信公众平台DEMO(PHP)
- thinkphp3.2嵌入百度编辑器ueditor的实例代码
- 9个PHP开发常用功能函数小结
- ASP.NET WebForm中<%=%>与<%#%>的区别
- c# SQLHelper(for winForm)实现代码
- JavaScript中setMonth()方法的使用详解
- Bootstrap复选框和单选按钮美化插件(推荐)
- C# 在PDF中创建和填充域
- Java中final关键字详解
- 15款jQuery分布引导插件分享
- jQuery之DOM对象和jQuery对象的转换与区别分析
- Android ListView列表控件的介绍和性能优化
- ASP.Net MVC+Data Table实现分页+排序功能的方法
- C#实现利用反射简化给类字段赋值的方法
- PHP 采集心得技巧