基于python框架Scrapy爬取自己的博客内容过程详解

前言

python中常用的写爬虫的库常有urllib2、requests,对于大多数比较简单的场景或者以学习为目的,可以用这两个库实现。这里有一篇我之前写过的用urllib2+BeautifulSoup做的一个抓取百度音乐热门歌曲的例子,有兴趣可以看一下。

本文介绍用Scrapy抓取我在博客园的博客列表,只抓取博客名称、发布日期、阅读量和评论量这四个简单的字段,以求用较简单的示例说明Scrapy的最基本的用法。

环境配置说明

操作系统:Ubuntu 14.04.2 LTS

Python:Python 2.7.6

Scrapy:Scrapy 1.0.3

注意:Scrapy1.0的版本和之前的版本有些区别,有些类的命名空间改变了。

创建项目

执行如下命令创建一个Scrapy项目

scrapy startproject scrapy_cnblogs

创建之后查看项目的目录结构如下:

scrapy_cnblogs
 ├── botcnblogs
 │   ├── __init__.py
 │   ├── items.py  #用于定义抓取内容的实体
 │   ├── pipelines.py #处理抓取的item的管道
 │   ├── settings.py #爬虫需要的配置参数在这里
 │ └── spiders
 │    └── __init__.py
 └── scrapy.cfg   #项目的配置文件,可以不去理会,默认即可

其中scrapy.cfg所在的目录为项目的根目录,此文件是项目的配置文件,项目建立后,此文件的内容可以不用理会。其内容如下:

[settings]
default = botcnblogs.settings
[deploy]
#url = http://localhost:6800/
project = botcnblogs

在items.py文件里定义在抓取网页内容中抽象出来的数据结构的定义,由于这里需要博客名称、发布日期、阅读量和评论量这四个字段,定义的Item结构如下:

from scrapy import Item,Field #引入Item、Field
class BotcnblogsItem(Item):
 # define the fields for your item here like:
 title = Field()  #标题
 publishDate = Field() #发布日期
 readCount = Field() #阅读量
 commentCount = Field() #评论数<br data-filtered="filtered"><br data-filtered="filtered">

在pipelines.py里对爬虫抓取到的信息(这里的信息是已经组织好的上面定义的Item对象)进行处理,官方介绍的典型的应用场景为:

  • 清理HTML数据
  • 验证爬取的数据(检查item包含某些字段)
  • 查重(并丢弃)
  • 将爬取结果保存到数据库中

它的定义也很简单,只需要实现process_item方法即可,此方法有两个参数,一个是item,即要处理的Item对象,另一个参数是spider,即爬虫。

另外还有open_spider和close_spider两个方法,分别是在爬虫启动和结束时的回调方法。

本例中处理很简单,只是将接收的Item对象写到一个json文件中,在__init__方法中以“w+”的方式打开或创建一个item.json的文件,然后把对象反序列化为字符串,写入到item.json文件中。代码如下:

# -*- coding: utf-8 -*-
import json
class BotcnblogsPipeline(object):
 def __init__(self):
  self.file = open("item.json", "w+")
 def process_item(self, item, spider):
  record = json.dumps(dict(item), ensure_ascii=False)+"\n" #此处如果有中文的话,要加上ensure_ascii=False参数,否则可能出现乱码
  self.file.write(record)
  return item
 def open_spider(self, spider):
  pass
 def close_spider(self, spider):
  self.file.close()

setting.py是爬虫的配置文件,配置爬虫的一些配置信息,这里用到的就是设置pipelines的ITEM_PIPELINES参数,此参数配置项目中启用的pipeline及其执行顺序,以字典的形式存在,{“pipeline”:执行顺序整数}

此例中的配置如下:

SPIDER_MODULES = ['botcnblogs.spiders']
NEWSPIDER_MODULE = 'botcnblogs.spiders'
ITEM_PIPELINES = {
 'botcnblogs.pipelines.BotcnblogsPipeline': 1,
}

准备工作都做好了,爬虫呢,爬虫在哪里实现呢,我们看到项目中有个spiders目录,里面只有一个init.py文件,没错,爬虫文件需要自己创建,就在这个目录下,这里创建一个botspider.py的文件,对网页进行解析的工作就要在这里实现了,此例中定义的爬虫类继承自CrawlSpider类。

定义一个Spider需要如下几个变量和方法实现:

name:定义spider名字,这个名字应该是唯一的,在执行这个爬虫程序的时候,需要用到这个名字。

allowed_domains:允许爬取的域名列表,例如现在要爬取博客园,这里要写成cnblogs.com

start_urls:爬虫最开始爬的入口地址列表。

rules:如果要爬取的页面不是单独一个或者几个页面,而是具有一定的规则可循的,例如爬取的博客有连续多页,就可以在这里设置,如果定义了rules,则需要自己定义爬虫规则(以正则表达式的方式),而且需要自定义回调函数。

代码说话:

#-*- coding:utf-8 -*-
__author__ = 'linuxfengzheng'
from scrapy.spiders import Spider, Rule
from scrapy.selector import Selector
from botcnblogs.items import BotcnblogsItem
from scrapy.linkextractors import LinkExtractor
import re
from scrapy.spiders import CrawlSpider
class botspider(CrawlSpider):
 name = "cnblogsSpider" #设置爬虫名称
 allowed_domains = ["cnblogs.com"] #设置允许的域名
 start_urls = [
  "http://www.cnblogs.com/fengzheng/default.html?page=3", #设置开始爬取页面
 ]
 rules = (
  Rule(LinkExtractor(allow=('fengzheng/default.html\?page\=([\d]+)', ),),callback='parse_item',follow=True),
 ) #制定规则
  def parse_item(self, response):
  sel = response.selector
  posts = sel.xpath('//div[@id="mainContent"]/div/div[@class="day"]')
  items = []
  for p in posts:
   #content = p.extract()
   #self.file.write(content.encode("utf-8"))
   item = BotcnblogsItem()
   publishDate = p.xpath('div[@class="dayTitle"]/a/text()').extract_first()

   item["publishDate"] = (publishDate is not None and [publishDate.encode("utf-8")] or [""])[0]
   #self.file.write(title.encode("utf-8"))
   title = p.xpath('div[@class="postTitle"]/a/text()').extract_first()
   item["title"] = (title is not None and [title.encode("utf-8")] or [""])[0]

   #re_first("posted @ 2015-11-03 10:32 风的姿态 阅读(\d+")

   readcount = p.xpath('div[@class="postDesc"]/text()').re_first(u"阅读\(\d+\)")

   regReadCount = re.search(r"\d+", readcount)
   if regReadCount is not None:
    readcount = regReadCount.group()
   item["readCount"] = (readcount is not None and [readcount.encode("utf-8")] or [0])[0]

   commentcount = p.xpath('div[@class="postDesc"]/text()').re_first(u"评论\(\d+\)")
   regCommentCount = re.search(r"\d+", commentcount)
   if regCommentCount is not None:
    commentcount = regCommentCount.group()
   item["commentCount"] = (commentcount is not None and [commentcount.encode("utf-8")] or [0])[0]
   items.append(item)
  return items
  #self.file.close()

因为1.0版和之前的版本在包上有所改变,这里列出此例中所涉及的不同版本的区别

所在包
1.0版本 之前版本
spider scrapy.spiders scrapy.spider
crawlspider scrapy.spiders scrapy.contrib.spiders
linkextractor scrapy.linkextractors scrapy.contrib.linkextractors
rule scrapy.spiders scrapy.contrib.spiders

爬虫思路:

首先进入到我的博客页面http://www.cnblogs.com/fengzheng/,这是我的博客首页,以列表形式显示已经发布的博文,这是第一页,点击页面下面的下一页按钮,进入第二页,页面地址为http://www.cnblogs.com/fengzheng/default.html?page=2,由此看出网站以page作为参数来表示页数,这样看来爬虫的规则就很简单了, fengzheng/default.html\?page\=([\d]+),这个就是爬虫的规则,爬取default.html页面,page参数为数字的页面,这样无论有多少页都可以遍历到。

当然,如果页面数量很少可以在start_urls列表中,将要爬取的页面都列出来,但是这样当博文数量增多就会出现问题,如下:

start_urls = [
  "http://www.cnblogs.com/fengzheng/default.html?page=1",
  "http://www.cnblogs.com/fengzheng/default.html?page=2",
  "http://www.cnblogs.com/fengzheng/default.html?page=3",
 ]

当爬取的网页具有规则定义的情况下,要继承CrawlSpider爬虫类,使用Spider就不行了,在规则定义(rules)时,如果要对爬取的网页进行处理,而不是简单的需要Url,这时,需要定义一个回调函数,在爬取到符合条件的网页时调用,并且设置follow=Ture,定义如下:

rules = (
  Rule(LinkExtractor(allow=('fengzheng/default.html\?page\=([\d]+)', ),),callback='parse_item',follow=True),
 )

回调函数名称为parse_item,在parse_item方法中,就是真正要分析网页html,获取需要的内容的时候了。观察页面,查看需要的信息在什么位置,如图:  

之后,分析网页源码,分析出xpath

用如下代码找到所有的class为day的div,每一个就是一个博文区域:

posts = sel.xpath('//div[@id="mainContent"]/div/div[@class="day"]')

之后遍历这个集合,获取所需内容,其中注意一下几点:

因为有中文内容,要对获取的内容进行encode("utf-8")编码

由于评论数和阅读量混在一起,要对那个字符串再进行正则表达式提取 

至此,简单的爬虫已经完成,接下来要运行这个爬虫,cd进入到爬虫项目所在的目录,执行以下命令:

scrapy crawl cnblogsSpider

会输出爬取过程信息

之后会看到,根目录中多了一个item.json文件,cat此文件内容,可以看到信息已经被提取出来:

点击这里在github获取源码

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 详解python3 + Scrapy爬虫学习之创建项目

    最近准备做一个关于scrapy框架的实战,爬取腾讯社招信息并存储,这篇博客记录一下创建项目的步骤 pycharm是无法创建一个scrapy项目的 因此,我们需要用命令行的方法新建一个scrapy项目 请确保已经安装了scrapy,twisted,pypiwin32 一:进入你所需要的路径,这个路径存储你创建的项目 我的将放在E盘的Scrapy目录下 二:创建项目:scrapy startproject ***(这个是项目名) 这样就创建好了一个名为tencent的项目 三:进入项目新建一个爬虫:

  • Python使用Scrapy爬虫框架全站爬取图片并保存本地的实现代码

    大家可以在Github上clone全部源码. Github:https://github.com/williamzxl/Scrapy_CrawlMeiziTu Scrapy官方文档:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html 基本上按照文档的流程走一遍就基本会用了. Step1: 在开始爬取之前,必须创建一个新的Scrapy项目. 进入打算存储代码的目录中,运行下列命令: scrapy startproject CrawlMe

  • 浅析python实现scrapy定时执行爬虫

    项目需要程序能够放在超算中心定时运行,于是针对scrapy写了一个定时爬虫的程序main.py ,直接放在scrapy的存储代码的目录中就能设定时间定时多次执行. 最简单的方法:直接使用Timer类 import time import os while True: os.system("scrapy crawl News") time.sleep(86400) #每隔一天运行一次 24*60*60=86400s或者,使用标准库的sched模块 import sched #初始化sch

  • Python3安装Scrapy的方法步骤

    本文介绍了Python3安装Scrapy的方法步骤,分享给大家,具体如下: 运行平台:Windows Python版本:Python3.x IDE:Sublime text3 一.Scrapy简介 Scrapy是一个为了爬取网站数据提取结构性数据而编写的应用框架,可以应用于数据挖掘,信息处理或存储历史数据等一些列的程序中.Scrapy最初就是为了网络爬取而设计的.现在,Scrapy已经推出了曾承诺过的Python3.x版本. 为什么学习Scrapy呢?它能我们更好的完成爬虫任务,自己写Pytho

  • Python3环境安装Scrapy爬虫框架过程及常见错误

    Windows •安装lxml 最好的安装方式是通过wheel文件来安装,http://www.lfd.uci.edu/~gohlke/pythonlibs/,从该网站找到lxml的相关文件.假如是Python3.5版本,WIndows 64位系统,那就找到lxml‑3.7.2‑cp35‑cp35m‑win_amd64.whl 这个文件并下载,然后通过pip安装. 下载之后,运行如下命令安装: pip3 install wheel pip3 install lxml‑3.7.2‑cp35‑cp3

  • 详解Python安装scrapy的正确姿势

    运行平台:Windows Python版本:Python3.x IDE:Sublime text3 一.Scrapy简介 Scrapy是一个为了爬取网站数据提取结构性数据而编写的应用框架,可以应用于数据挖掘,信息处理或存储历史数据等一些列的程序中.Scrapy最初就是为了网络爬取而设计的.现在,Scrapy已经推出了曾承诺过的Python3.x版本. 为什么学习Scrapy呢?它能我们更好的完成爬虫任务,自己写Python爬虫程序好比孤军奋战,而使用了Scrapy就好比手底下有了千军万马.Scr

  • 基于python框架Scrapy爬取自己的博客内容过程详解

    前言 python中常用的写爬虫的库常有urllib2.requests,对于大多数比较简单的场景或者以学习为目的,可以用这两个库实现.这里有一篇我之前写过的用urllib2+BeautifulSoup做的一个抓取百度音乐热门歌曲的例子,有兴趣可以看一下. 本文介绍用Scrapy抓取我在博客园的博客列表,只抓取博客名称.发布日期.阅读量和评论量这四个简单的字段,以求用较简单的示例说明Scrapy的最基本的用法. 环境配置说明 操作系统:Ubuntu 14.04.2 LTS Python:Pyth

  • Python实战实现爬取天气数据并完成可视化分析详解

    1.实现需求: 从网上(随便一个网址,我爬的网址会在评论区告诉大家,dddd)获取某一年的历史天气信息,包括每天最高气温.最低气温.天气状况.风向等,完成以下功能: (1)将获取的数据信息存储到csv格式的文件中,文件命名为”城市名称.csv”,其中每行数据格式为“日期,最高温,最低温,天气,风向”: (2)在数据中增加“平均温度”一列,其中:平均温度=(最高温+最低温)/2,在同一张图中绘制两个城市一年平均气温走势折线图: (3)统计两个城市各类天气的天数,并绘制条形图进行对比,假设适合旅游的

  • python selenium爬取斗鱼所有直播房间信息过程详解

    还是分析一下大体的流程: 首先还是Chrome浏览器抓包分析元素,这是网址:https://www.douyu.com/directory/all 发现所有房间的信息都是保存在一个无序列表中的li中,所以我们可以先获取一个装有li的element对象的列表,然后在对每个element逐一操作 分析斗鱼的翻页,有一个下一页按钮,是个li,class="dy-Pagination-item-custom" ,但是当烦到最后一页的时候,class="dy-Pagination-di

  • python实现Scrapy爬取网易新闻

    1. 新建项目 在命令行窗口下输入scrapy startproject scrapytest, 如下 然后就自动创建了相应的文件,如下 2. 修改itmes.py文件 打开scrapy框架自动创建的items.py文件,如下 # Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import s

  • 用基于python的appium爬取b站直播消费记录

    基于python的Appium进行b站直播消费记录爬取 之前看文章说fiddler也可以进行爬取,但尝试了一下没成功,这次选择appium进行爬取.类似的,可以运用爬取微信朋友圈和抖音等手机app相关数据 正文 #环境配置参考 前期工作准备,需要安装python.jdk.PyCharm.Appium-windows-x.x.Appium_Python_Client.Android SDK,pycharm可以用anaconda的jupyter来替代 具体可以参考这篇博客,讲的算是很清楚啦 http

  • 基于python计算滚动方差(标准差)talib和pd.rolling函数差异详解

    我就废话不多说了,大家还是直接看代码吧! # -*- coding: utf-8 -*- """ Created on Thu Apr 12 11:23:46 2018 @author: henbile """ #计算滚动波动率可以使用专门做技术分析的talib包里面的函数,也可以使用pandas包里面的滚动函数. #但是两个函数对于分母的选择,就是使用N还是N-1作为分母这件事情上是有分歧的. #另一个差异在于:talib包计算基于numpy,

  • Python使用Scrapy爬取妹子图

    Python Scrapy爬虫,听说妹子图挺火,我整站爬取了,上周一共搞了大概8000多张图片.和大家分享一下. 核心爬虫代码 # -*- coding: utf-8 -*- from scrapy.selector import Selector import scrapy from scrapy.contrib.loader import ItemLoader, Identity from fun.items import MeizituItem class MeizituSpider(sc

  • Python使用scrapy爬取阳光热线问政平台过程解析

    目的:爬取阳光热线问政平台问题反映每个帖子里面的标题.内容.编号和帖子url CrawlSpider版流程如下: 创建爬虫项目dongguang scrapy startproject dongguang 设置items.py文件 # -*- coding: utf-8 -*- import scrapy class NewdongguanItem(scrapy.Item): # define the fields for your item here like: # name = scrapy

  • Python爬取腾讯视频评论的思路详解

    一.前提条件 安装了Fiddler了(用于抓包分析) 谷歌或火狐浏览器 如果是谷歌浏览器,还需要给谷歌浏览器安装一个SwitchyOmega插件,用于代理服务器 有Python的编译环境,一般选择Python3.0及以上 声明:本次爬取腾讯视频里 <最美公里>纪录片的评论.本次爬取使用的浏览器是谷歌浏览器 二.分析思路 1.分析评论页面 根据上图,我们可以知道:评论使用了Ajax异步刷新技术.这样就不能使用以前分析当前页面找出规律的手段了.因为展示的页面只有部分评论,还有大量的评论没有被刷新出

  • 基于python requests selenium爬取excel vba过程解析

    目的:基于办公与互联网隔离,自带的office软件没有带本地帮助工具,因此在写vba程序时比较不方便(后来发现07有自带,心中吐血,瞎折腾些什么).所以想到通过爬虫在官方摘录下来作为参考. 目标网站:https://docs.microsoft.com/zh-cn/office/vba/api/overview/ 所使工具: python3.7,requests.selenium库 前端方面:使用了jquery.jstree(用于方便的制作无限层级菜单 设计思路: 1.分析目标页面,可分出两部分

随机推荐