C语言接口与实现方法实例详解

本文以实例形式详细讲述了C语言接口与实现方法,对于深入掌握C语言程序设计有一定的借鉴价值。分享给大家供大家参考。具体分析如下:

一般来说,一个模块有两部分组成:接口和实现。接口指明模块要做什么,它声明了使用该模块的代码可用的标识符、类型和例程,实现指明模块是如何完成其接口声明的目标的,一个给定的模块通常只有一个接口,但是可能会有许多种实现能够提供接口所指定的功能。每个实现可能使用不同的算法和数据结构,但是它们都必须符合接口所给出的使用说明。客户调用程序是使用某个模块的一段代码,客户调用程序导入接口,而实现导出接口。由于多个客户调用程序是共享接口和实现的,因此使用实现的目标代码避免了不必要的代码重复,同时也有助于避免错误,因为接口和实现只需一次编写和调试就可多次使用。

接口

接口只需要指明客户调用程序可能使用的标识符即可,应尽可能地隐藏一些无关的表示细节和算法,这样客户调用程序可以不必依赖于特定的实现细节。这种客户调用程序和实现之间的依赖--耦合----可能会在实现改变时引起错误,当这种依赖性埋藏在一些关于实现隐藏的或是不明确的假设中时,这些错误可能很难修复,因此一个设计良好且描述精确的接口应该尽量减少耦合。

C语言对接口和实现的分离只提供最基本的支持,但是简单的约定能给接口/实现方法论带来巨大的好处。在C中,接口在头文件声明,头文件声明了客户调用程序可以使用的宏、类型、数据结构、变量以及例程。用户使用C语言的预处理指令#include导入接口。

下面的例子说明了本篇文章的接口中所使用的一些约定、接口:

extern int Arith_max(int x, int y);
extern int Arith_min(int x, int y);
extern int Arith_div(int x, int y);
extern int Arith_mod(int x, int y);
extern int Arith_ceiling(int x, int y);
extern int Arith_floor (int x, int y);

该接口的名字为Arith,接口头文件也相应地命名为arith.h,接口的名字以前缀的形式出现在接口的每个标识符中。模块名不仅提供了合适的前缀,而且还有助于整理客户调用程序代码。

Arith接口还提供了一些标准C函数库中没有但是很有用的函数,并为出发和取模提供了良好的定义,而标准C中并没有给出这些操作的定义和只提供基于实现的定义。

实现

一个实现导出一个接口,它定义了必要的变量和函数以提供接口所规定的功能,在C语言中,一个实现是由一个或多个.c文件提供的,一个实现必须提供其导出的接口所指定的功能。实现应包含接口的.h文件,以保证它的定义和接口的声明时一致的。

Arith_min和Arith_max返回其整型参数中的最小值和最大值:

int Arith_max(int x, int y) {
  return x > y ? x : y;
}
int Arith_min(int x, int y) {
  return x > y ? y : x;
}

Arith_div返回y除以x得到的商,Arith_mod返回相应的余数。当x与y同号的时候,Arith_div(x,y)等价于x/y,Arith_mod(x,y)等价于x%y

当x与y的符号不同的时候,C的内嵌操作的返回值就取决于具体的实现:

如果-13/5=2,-13%5=-3,如果-13/5=-3,-13%5=2

标准库函数总是向零取整,因此div(-13,2)=-2,Arith_div和Arith_mod的语义同样定义好了:它们总是趋近数轴的左侧取整,因此Arith_div(-13,5)=-3,Arith_div(x,y)是不超过实数z的最大整数,其中z满足z*y=x。

Arith_mod(x,y)被定义为x-y*Arith_div(x,y)。因此Arith_mod(-13,5)=-13-5*(-3)=2

函数Arith_ceiling和Arith_floor遵循类似的约定,Arith_ceiling(x,y)返回不小于实数商x/y的最小整数

Arith_floor(x,y)返回不超过实数商x/y的最大整数

完整实现代码如下:

#include "arith.h"
int Arith_max(int x, int y) {
  return x > y ? x : y;
}
int Arith_min(int x, int y) {
  return x > y ? y : x;
}
int Arith_div(int x, int y) {
  if (-13/5 == -2
  &&  (x < 0) != (y < 0) && x%y != 0)
    return x/y - 1;
  else
    return x/y;
}
int Arith_mod(int x, int y) {
  if (-13/5 == -2
  &&  (x < 0) != (y < 0) && x%y != 0)
    return x%y + y;
  else
    return x%y;
}
int Arith_floor(int x, int y) {
  return Arith_div(x, y);
}
int Arith_ceiling(int x, int y) {
  return Arith_div(x, y) + (x%y != 0);
}

抽象数据类型

抽象数据类型(abstract data type,ADT)是一个定义了数据类型以及基于该类型值提供的各种操作的接口

一个高级类型是抽象的,因为接口隐藏了它的表示细节,以免客户调用程序依赖这些细节。下面是一个抽象数据类型(ADT)的规范化例子--堆栈,它定义了该类型以及五种操作:

#ifndef STACK_INCLUDED
#define STACK_INCLUDED
#define T Stack_T
typedef struct T *T;
extern T   Stack_new (void);
extern int  Stack_empty(T stk);
extern void Stack_push (T stk, void *x);
extern void *Stack_pop (T stk);
extern void Stack_free (T *stk);
#undef T
#endif

实现

包含相关头文件:

#include <stddef.h>
#include "assert.h"
#include "mem.h"
#include "stack.h"
#define T Stack_T

Stack_T的内部是一个结构,该结构有个字段指向一个栈内指针的链表以及一个这些指针的计数:

struct T {
  int count;
  struct elem {
    void *x;
    struct elem *link;
  } *head;
};

Stack_new分配并初始化一个新的T:

T Stack_new(void) {
  T stk;
  NEW(stk);
  stk->count = 0;
  stk->head = NULL;
  return stk;
}

其中NEW是一个另一个接口中的一个分配宏指令。NEW(p)将分配该结构的一个实例,并将其指针赋给p,因此Stack_new中使用它就可以分配一个新的Stack_T

当count=0时,Stack_empty返回1,否则返回0:

int Stack_empty(T stk) {
  assert(stk);
  return stk->count == 0;
}

assert(stk)实现了可检查的运行期错误,它禁止空指针传给Stack中的任何函数。

Stack_push和Stack_pop从stk->head所指向的链表的头部添加或移出元素:

void Stack_push(T stk, void *x) {
  struct elem *t;
  assert(stk);
  NEW(t);
  t->x = x;
  t->link = stk->head;
  stk->head = t;
  stk->count++;
}
void *Stack_pop(T stk) {
  void *x;
  struct elem *t;
  assert(stk);
  assert(stk->count > 0);
  t = stk->head;
  stk->head = t->link;
  stk->count--;
  x = t->x;
  FREE(t);
  return x;
}

FREE是另一个接口中定义的释放宏指令,它释放指针参数所指向的空间,然后将参数设为空指针

void Stack_free(T *stk) {
  struct elem *t, *u;
  assert(stk && *stk);
  for (t = (*stk)->head; t; t = u) {
    u = t->link;
    FREE(t);
  }
  FREE(*stk);
}

完整实现代码如下:

#include <stddef.h>
#include "assert.h"
#include "mem.h"
#include "stack.h"
#define T Stack_T
struct T {
  int count;
  struct elem {
    void *x;
    struct elem *link;
  } *head;
};
T Stack_new(void) {
  T stk;
  NEW(stk);
  stk->count = 0;
  stk->head = NULL;
  return stk;
}
int Stack_empty(T stk) {
  assert(stk);
  return stk->count == 0;
}
void Stack_push(T stk, void *x) {
  struct elem *t;
  assert(stk);
  NEW(t);
  t->x = x;
  t->link = stk->head;
  stk->head = t;
  stk->count++;
}
void *Stack_pop(T stk) {
  void *x;
  struct elem *t;
  assert(stk);
  assert(stk->count > 0);
  t = stk->head;
  stk->head = t->link;
  stk->count--;
  x = t->x;
  FREE(t);
  return x;
}
void Stack_free(T *stk) {
  struct elem *t, *u;
  assert(stk && *stk);
  for (t = (*stk)->head; t; t = u) {
    u = t->link;
    FREE(t);
  }
  FREE(*stk);
}

相信本文所述对大家的C程序设计有一定的借鉴价值。

(0)

相关推荐

  • C语言实现找出二叉树中某个值的所有路径的方法

    本文实例讲述了C语言实现找出二叉树中某个值的所有路径的方法,是非常常用的一个实用算法技巧.分享给大家供大家参考. 具体实现方法如下: #include <iostream> #include <vector> #include <iterator> #include <algorithm> using namespace std; vector<int> result; struct Node { Node(int i = 0, Node *pl

  • C语言实现颠倒栈的方法

    本文实例讲述了C语言实现颠倒栈的方法,很实用的技巧.分享给大家供大家参考之用. 具体实现方法如下: #include <iostream> #include <iterator> #include <algorithm> #include <vector> #include <stack> using namespace std; void initializeStack(stack<int> &st) { for(int i

  • C语言实现求定积分的方法

    本文实例讲述了C语言实现求定积分的方法.分享给大家供大家参考.具体实现方法如下: 复制代码 代码如下: #include <cmath>  #include <cstdio> #define ACC 1000 float solve(float (*p)(float),float up,float down,int acc); float fun_exp(float x); float fun_qua(float x); void main(){ char selection; f

  • c语言操作文本的基本使用方法

    字符读写函数  :fgetc和fputc字符串读写函数:fgets和fputs数据块读写函数:freed和fwrite格式化读写函数:fscanf和fprinf 1.字符读写:fgetc函数的功能是从指定的文件中读一个字符,函数调用的形式为:字符变量=fgetc(文件指针):fputc函数的功能是把一个字符写入指定的文件中,函数调用的形式为:fputc(字符量,文件指针): 2.字符串读写读字符串函数fgets 函数的功能是从指定的文件中读一个字符串到字符数组中,函数调用的形式为: fgets(

  • C语言金币阵列问题解决方法

    本文实例详细讲述了C语言实现金币阵列问题的解决方法,分享给大家供大家参考.具体方法如下: 问题描述: 有m*n(1 ≤ m, n ≤ 100)个金币在桌面上排成一个 m 行 n 列的阵列.每一枚金币或正面朝上或背面朝上.用数字表示金币状态,0表示金币正面朝上,1 表示背面朝上. 金币阵列游戏的规则是: 1. 每次可将任一行金币翻过来放在原来的位置上: 2. 每次可任选 2 列,交换这 2 列金币的位置. 本题要求对于给定的金币阵列初始状态和目标状态,编程计算按金币游戏规则,将金币阵列从初始状态变

  • C语言求连续最大子数组和的方法

    本文实例讲述了C语言求连续最大子数组和的方法,是非常实用的技巧.分享给大家供大家参考. 具体实现方法如下: #include <iostream> using namespace std; int array[] = {1, -2, 3, 10, -4, 7, 2, -5}; //int array[] = {-10, -1, -2, -3, -4, -5}; const int size = sizeof array / sizeof *array; int maxSubArray(int

  • C语言实现计算树的深度的方法

    本文实例讲述了C语言实现计算树的深度的方法.是算法设计中常用的技巧.分享给大家供大家参考.具体方法如下: /* * Copyright (c) 2011 alexingcool. All Rights Reserved. */ #include <iostream> using namespace std; struct Node { Node(int i = 0, Node *l = NULL, Node *r = NULL) : data(i), left(l), right(r) {}

  • C语言实现将字符串转换为数字的方法

    本文实例讲述了C语言实现将字符串转换为数字的方法.分享给大家供大家参考.具体实现方法如下: C语言提供了几个标准库函数,可以将字符串转换为任意类型(整型.长整型.浮点型等)的数字.以下是用atoi()函数将字符串转换为整数的一个例子: 复制代码 代码如下: # include <stdio. h> # include <stdlib. h> void main (void) ; void main (void) {     int num;     char * str = &qu

  • C语言接口与实现方法实例详解

    本文以实例形式详细讲述了C语言接口与实现方法,对于深入掌握C语言程序设计有一定的借鉴价值.分享给大家供大家参考.具体分析如下: 一般来说,一个模块有两部分组成:接口和实现.接口指明模块要做什么,它声明了使用该模块的代码可用的标识符.类型和例程,实现指明模块是如何完成其接口声明的目标的,一个给定的模块通常只有一个接口,但是可能会有许多种实现能够提供接口所指定的功能.每个实现可能使用不同的算法和数据结构,但是它们都必须符合接口所给出的使用说明.客户调用程序是使用某个模块的一段代码,客户调用程序导入接

  • Kotlin 语言中调用 JavaScript 方法实例详解

    Kotlin 语言中调用 JavaScript 方法实例详解 Kotlin 已被设计为能够与 Java 平台轻松互操作.它将 Java 类视为 Kotlin 类,并且 Java 也将 Kotlin 类视为 Java 类.但是,JavaScript 是一种动态类型语言,这意味着它不会在编译期检查类型.你可以通过动态类型在 Kotlin 中自由地与 JavaScript 交流,但是如果你想要 Kotlin 类型系统的全部威力 ,你可以为 JavaScript 库创建 Kotlin 头文件. 内联 J

  • apache zookeeper使用方法实例详解

    本文涉及了Apache Zookeeper使用方法实例详解的相关知识,接下来我们就看看具体内容. 简介 Apache Zookeeper 是由 Apache Hadoop 的 Zookeeper 子项目发展而来,现在已经成为了 Apache 的顶级项目.Zookeeper 为分布式系统提供了高效可靠且易于使用的协同服务,它可以为分布式应用提供相当多的服务,诸如统一命名服务,配置管理,状态同步和组服务等. Zookeeper 接口简单,开发人员不必过多地纠结在分布式系统编程难于处理的同步和一致性问

  • IOS自带Email的两种方法实例详解

    IOS自带Email的两种方法实例详解 IOS系统框架提供的两种发送Email的方法:openURL 和 MFMailComposeViewController.借助这两个方法,我们可以轻松的在应用里加入如用户反馈这类需要发送邮件的功能. 1.openURL 使用openURL调用系统邮箱客户端是我们在IOS3.0以下实现发邮件功能的主要手段.我们可以通过设置url里的相关参数来指定邮件的内容,不过其缺点很明显,这样的过程会导致程序暂时退出.下面是使用openURL来发邮件的一个小例子: #pr

  • JSP开发Servlet重写init()方法实例详解

    JSP开发Servlet重写init()方法实例详解 写一个Servlet时,有时需要我们重写该Servlet的初始化方法,然后,究竟是重写init(ServletConfig config),还是重写init(),这是个问题.要明了这一点,首先要知道Servlet的几个类和接口的联系: ServletConfig接口:其中有getServletName();getServletContext();getInitParameter(String name);getInitParameterNam

  • C语言数据输入与输出实例详解

    C语言数据输入与输出实例详解 1 概论 C语言提供了跨平台的数据输入输出函数scanf()和printf()函数,它们可以按照指定的格式来解析常见的数据类型,例如整数,浮点数,字符和字符串等等.数据输入的来源可以是文件,控制台以及网络,而输出的终端可以是控制台,文件甚至是网页. 2 数据输出 从第一个c语言程序中,就使用了跨平台的库函数printf实现将一段文字输出到控制台,而实际上,printf()不仅可以将数据按照指定的格式输出到控制台,还可以是网页或者是指定的文件中,printf()函数执

  • java 请求跨域问题解决方法实例详解

    java 请求跨域问题解决方法实例详解 新建Util类,在Util中添加下面方法: /* * response请求跨域公共设置 */ public static HttpServletResponse SetHttpServletResponse( HttpServletResponse response) { response.setHeader("Access-Control-Allow-Origin", "*"); response.setHeader(&qu

  • C语言数据结构 链表与归并排序实例详解

    C语言数据结构 链表与归并排序实例详解 归并排序适合于对链表进行原址排序,即只改变指针的连接方式,不交换链表结点的内容. 归并排序的基本思想是分治法:先把一个链表分割成只有一个节点的链表,然后按照一定顺序.自底向上合并相邻的两个链表. 只要保证各种大小的子链表是有序的,那么最后返回的链表就一定是有序的. 归并排序分为分割和合并两个子过程.分割是用递归的方法,把链表对半分割成两个子链表:合并是在递归返回(回朔)的时候,把两个有序链表合并成一个有序链表. (注意:只有一个节点的链表一定是有序的) 这

  • Android中webview与JS交互、互调方法实例详解

    Android中webview与JS交互.互调方法实例详解 前言: 对于试水的功能,一般公司都会采用H5的方式来开发,可以用很少的资源与很短的项目工期来完成. 但许多情况下,H5页面会需要一些原生持有的一些如用户信息之类的数据,一些交互也需要调用原生的,如toast之类要保持同一个手机风格一致的交互行为.这个时候就需要能够让JS主动调用原生的方法来进行操作或者获取数据.或者是原生调用JS的方法在H5加载的时候传递一些参数. 对于原生调用JS的方法 我们需要实现一个WebViewClient,在这

  • springboot config 拦截器使用方法实例详解

    本文介绍Spring-Boot中使用拦截器,一般在拦截器中处理跨域处理,允许跨域访问项目,拦截器使用详细资料请查阅官网. 实现自定义拦截器步骤: 1.创建一个类并实现HandlerInterceptor接口. 2.创建一个Java类继承WebMvcConfigurerAdapter,并重写 addInterceptors 方法. 2.将自定义的拦截器交由spring管理,然后将对像手动添加到拦截器链中(在addInterceptors方法中添加). 创建拦截器类 package com.exam

随机推荐