Python numpy.array()生成相同元素数组的示例
如下所示:
new_array = np.zeros((5,4)) for i in range(3): new_array[i] = np.array([0.25]*4)
运行结果:
>>> new_array array([[0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. ]])
以上这篇Python numpy.array()生成相同元素数组的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Python使用numpy模块创建数组操作示例
本文实例讲述了Python使用numpy模块创建数组操作.分享给大家供大家参考,具体如下: 创建数组 创建ndarray 创建数组最简单的方法就是使用array函数.它接收一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组. array函数创建数组 import numpy as np ndarray1 = np.array([1, 2, 3, 4]) ndarray2 = np.array(list('abcdefg')) ndarray3 = np.array([
-
python numpy 一维数组转变为多维数组的实例
如下所示: import numpy new_list = [i for i in range(9)] numpy.array(new_list).reshape(3,3) 借助numpy库: 以上这篇python numpy 一维数组转变为多维数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
Python打开文件,将list、numpy数组内容写入txt文件中的方法
python保存numpy数据: numpy.savetxt("result.txt", numpy_data); 保存list数据: file=open('data.txt','w') file.write(str(list_data)); file.close() 以上这篇Python打开文件,将list.numpy数组内容写入txt文件中的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
python中找出numpy array数组的最值及其索引方法
在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where,其又是list没有的 首先我们可以得到array在全局和每行每列的最大值(最小值同理) >>> a = np.arange(9).reshape((3,3)) >>> a array([[0, 1, 2], [9, 4, 5], [6, 7, 8]]) >>&
-
讲解Python3中NumPy数组寻找特定元素下标的两种方法
引子 Matlab中有一个函数叫做find,可以很方便地寻找数组内特定元素的下标,即:Find indices and values of nonzero elements. 这个函数非常有用.比如,我们想计算图1中点Q(x0, y0)抛物线的最短距离.一个可以实施的方法是:计算出抛物线上所有点到Q点的距离,找到最小值,用find函数找到最小值对应的下标,即M点横坐标和纵坐标对应的元素的下标,M点到Q点的距离就是最短距离. 首先给出Matlab使用find函数实现的代码: a = linspac
-
Python 取numpy数组的某几行某几列方法
直接分析,如原矩阵如下(1): (1) 我们要截取的矩阵(取其一三行,和三四列数据构成矩阵)为如下(2): (2) 错误分析: 取 C 的1 3行,3 4 列,定义 Z = [0,2] #定义行数 d = [2,3] #定义列数 #代码 C_zd = C[z,d] 则结果为: 由结果分析取的是第一行第三列和第三行第四列的数据,并非我们想要的结果. 正确分析: C_A = c[[0,2]] #先取出想要的行数据 C_A = C_A[:,[2,3]] #再取出要求的列数据 print(C_A) #输
-
Python numpy数组转置与轴变换
这篇文章主要介绍了Python numpy数组转置与轴变换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 矩阵的转置 >>> import numpy as np >>> arr=np.arange(15).reshape((3,5)) >>> arr array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>&
-
Python快速转换numpy数组中Nan和Inf的方法实例说明
在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误.这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值. numpy.nan_to_num(x): 使用0代替数组x中的nan元素,使用有限的数字代替inf元素 使用范例: >>>import numpy as np >>> a = np.array([[np.nan,np.inf],\ ... [-np.nan,-np.inf]]) >>
-
Python numpy.array()生成相同元素数组的示例
如下所示: new_array = np.zeros((5,4)) for i in range(3): new_array[i] = np.array([0.25]*4) 运行结果: >>> new_array array([[0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. ]]) 以上这篇Pytho
-
对python numpy.array插入一行或一列的方法详解
如下所示: import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) b = np.array([[0,0,0]]) c = np.insert(a, 0, values=b, axis=0) d = np.insert(a, 0, values=b, axis=1) print(c) print(d) >>c [[0 0 0] [1 2 3] [4 5 6] [7 8 9]] >>d [[0 1 2 3] [0 4 5
-
python获取array中指定元素的示例
对于array,如2-D的array,如何取指定元素 设array为3*10的shape s = array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]]) 想取指定元素,下标索引即可如: >>> s[1][4] 扩展一下,若想同时取多个元素,则把行号,列号对应的元素封装成list,或者range &
-
NumPy 如何生成多维数组的方法
Python现在是最热门的人工智能语言,各种工具的支持如Google的Tensorflow,都是首选支持Python的. 但是,与R语言不同,Python语言设计时,并没有考虑对于矩阵运算,统计计算等功能做专项支持.于是我们需要NumPy库来补足这一能力上的不足. NumPy是Python的著名扩展库,相当于Python中的MATLAB. Numpy 中,ndarray 类具有六个参数,它们分别为: shape:数组的形状. dtype:数据类型. buffer:对象暴露缓冲区接口. offse
-
python实现的生成word文档功能示例
本文实例讲述了python实现的生成word文档功能.分享给大家供大家参考,具体如下: 每月1次的测试费用报销,需要做一个文档.干脆花点时间写个程序吧. # -*- coding: utf-8 -*- from tools import get_data from docx import Document def new_doc(fee_data,doc_path,fee):#新建一个word文档,写入汇总表的数据 document = Document() p_total = document
-
Python数据库反向生成Model最优方案示例
目录 1. 前言 2. 普通项目反向生成 Model 3. 最后 1. 前言 熟悉 Django 的朋友应该知道,我们可以通过「 inspectdb 」命令将数据库表反向生成 Model 并写入到文件中去 比如,Django 项目映射数据库中有一张 student 表,我们希望反向生成 Model 并写入到本地文件 models.py 文件中 只需要输入下面命令: # 反向生成Model # 进入到项目根目录,输入下面的命令 # 其中 # student:映射数据库的student数据表 # 写
-
Python numpy线性代数用法实例解析
这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 numpy中线性代数用法 矩阵乘法 >>> import numpy as np >>> x=np.array([[1,2,3],[4,5,6]]) >>> y=np.array([[7,8],[-1,7],[8,9]]) >>> x array([[1, 2, 3], [4
-
基于Python Numpy的数组array和矩阵matrix详解
NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵
-
Python中的二维数组实例(list与numpy.array)
关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要讨论list和numpy.array的区别: 我们可以通过以下的代码看出二者的区别 >>import numpy as np >>a=[[1,2,3],[4,5,6],[7,8,9]] >>a [[1,2,3],[4,5,6],[7,8,9]] >>type(a
随机推荐
- Python实现全角半角转换的方法
- dos、bat批处理延时执行命令的两种方法
- 用hta+javascript实现替换网站被下木马网页中的iframe
- RequireJS 依赖关系的实例(推荐)
- 一些PHP写的小东西
- php中memcache 基本操作实例
- 关于PHP中操作MySQL数据库的一些要注意的问题
- python中getaddrinfo()基本用法实例分析
- 关于vue-router的beforeEach无限循环的问题解决
- Jquery实现三层遍历删除功能代码
- 实例区别onClick和onDBClick两事件方法
- 点弹代码 点击页面任何位置都可以弹出页面效果代码
- java 线程公平锁与非公平锁详解及实例代码
- Java常见问题之javac Hello.java找不到文件的解决方法
- angular 实现下拉列表组件的示例代码
- pandas删除行删除列增加行增加列的实现
- Python适配器模式代码实现解析
- 浅谈JavaScript面向对象--继承
- 关于线程池你不得不知道的一些设置
- 易语言读环境变量命令使用讲解