python验证码识别教程之利用滴水算法分割图片

滴水算法概述

滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题。

引言

之前提过对于有粘连的字符可以使用滴水算法来解决分割,但智商捉急的我实在是领悟不了这个算法的精髓,幸好有小伙伴已经实现相关代码

我对上面的代码进行了一些小修改,同时升级为python3的代码。

还是以这张图片为例:

在以前的我们已经知道这种简单的粘连可以通过控制阈值来实现分割,这里我们使用滴水算法。

首先使用之前文章中介绍的垂直投影或者连通域先进行一次切割处理,得到结果如下:

针对于最后粘连情况来使用滴水算法处理:

from itertools import groupby

def binarizing(img,threshold):
 """传入image对象进行灰度、二值处理"""
 img = img.convert("L") # 转灰度
 pixdata = img.load()
 w, h = img.size
 # 遍历所有像素,大于阈值的为黑色
 for y in range(h):
  for x in range(w):
   if pixdata[x, y] < threshold:
    pixdata[x, y] = 0
   else:
    pixdata[x, y] = 255
 return img

def vertical(img):
 """传入二值化后的图片进行垂直投影"""
 pixdata = img.load()
 w,h = img.size
 result = []
 for x in range(w):
  black = 0
  for y in range(h):
   if pixdata[x,y] == 0:
    black += 1
  result.append(black)
 return result

def get_start_x(hist_width):
 """根据图片垂直投影的结果来确定起点
  hist_width中间值 前后取4个值 再这范围内取最小值
 """
 mid = len(hist_width) // 2 # 注意py3 除法和py2不同
 temp = hist_width[mid-4:mid+5]
 return mid - 4 + temp.index(min(temp))

def get_nearby_pix_value(img_pix,x,y,j):
 """获取临近5个点像素数据"""
 if j == 1:
  return 0 if img_pix[x-1,y+1] == 0 else 1
 elif j ==2:
  return 0 if img_pix[x,y+1] == 0 else 1
 elif j ==3:
  return 0 if img_pix[x+1,y+1] == 0 else 1
 elif j ==4:
  return 0 if img_pix[x+1,y] == 0 else 1
 elif j ==5:
  return 0 if img_pix[x-1,y] == 0 else 1
 else:
  raise Exception("get_nearby_pix_value error")

def get_end_route(img,start_x,height):
 """获取滴水路径"""
 left_limit = 0
 right_limit = img.size[0] - 1
 end_route = []
 cur_p = (start_x,0)
 last_p = cur_p
 end_route.append(cur_p)

 while cur_p[1] < (height-1):
  sum_n = 0
  max_w = 0
  next_x = cur_p[0]
  next_y = cur_p[1]
  pix_img = img.load()
  for i in range(1,6):
   cur_w = get_nearby_pix_value(pix_img,cur_p[0],cur_p[1],i) * (6-i)
   sum_n += cur_w
   if max_w < cur_w:
    max_w = cur_w
  if sum_n == 0:
   # 如果全黑则看惯性
   max_w = 4
  if sum_n == 15:
   max_w = 6

  if max_w == 1:
   next_x = cur_p[0] - 1
   next_y = cur_p[1]
  elif max_w == 2:
   next_x = cur_p[0] + 1
   next_y = cur_p[1]
  elif max_w == 3:
   next_x = cur_p[0] + 1
   next_y = cur_p[1] + 1
  elif max_w == 5:
   next_x = cur_p[0] - 1
   next_y = cur_p[1] + 1
  elif max_w == 6:
   next_x = cur_p[0]
   next_y = cur_p[1] + 1
  elif max_w == 4:
   if next_x > cur_p[0]:
    # 向右
    next_x = cur_p[0] + 1
    next_y = cur_p[1] + 1
   if next_x < cur_p[0]:
    next_x = cur_p[0]
    next_y = cur_p[1] + 1
   if sum_n == 0:
    next_x = cur_p[0]
    next_y = cur_p[1] + 1
  else:
   raise Exception("get end route error")

  if last_p[0] == next_x and last_p[1] == next_y:
   if next_x < cur_p[0]:
    max_w = 5
    next_x = cur_p[0] + 1
    next_y = cur_p[1] + 1
   else:
    max_w = 3
    next_x = cur_p[0] - 1
    next_y = cur_p[1] + 1
  last_p = cur_p

  if next_x > right_limit:
   next_x = right_limit
   next_y = cur_p[1] + 1
  if next_x < left_limit:
   next_x = left_limit
   next_y = cur_p[1] + 1
  cur_p = (next_x,next_y)
  end_route.append(cur_p)
 return end_route

def get_split_seq(projection_x):
 split_seq = []
 start_x = 0
 length = 0
 for pos_x, val in enumerate(projection_x):
  if val == 0 and length == 0:
   continue
  elif val == 0 and length != 0:
   split_seq.append([start_x, length])
   length = 0
  elif val == 1:
   if length == 0:
    start_x = pos_x
   length += 1
  else:
   raise Exception('generating split sequence occurs error')
 # 循环结束时如果length不为0,说明还有一部分需要append
 if length != 0:
  split_seq.append([start_x, length])
 return split_seq

def do_split(source_image, starts, filter_ends):
 """
 具体实行切割
 : param starts: 每一行的起始点 tuple of list
 : param ends: 每一行的终止点
 """
 left = starts[0][0]
 top = starts[0][1]
 right = filter_ends[0][0]
 bottom = filter_ends[0][1]
 pixdata = source_image.load()
 for i in range(len(starts)):
  left = min(starts[i][0], left)
  top = min(starts[i][1], top)
  right = max(filter_ends[i][0], right)
  bottom = max(filter_ends[i][1], bottom)
 width = right - left + 1
 height = bottom - top + 1
 image = Image.new('RGB', (width, height), (255,255,255))
 for i in range(height):
  start = starts[i]
  end = filter_ends[i]
  for x in range(start[0], end[0]+1):
   if pixdata[x,start[1]] == 0:
    image.putpixel((x - left, start[1] - top), (0,0,0))
 return image

def drop_fall(img):
 """滴水分割"""
 width,height = img.size
 # 1 二值化
 b_img = binarizing(img,200)
 # 2 垂直投影
 hist_width = vertical(b_img)
 # 3 获取起点
 start_x = get_start_x(hist_width)

 # 4 开始滴水算法
 start_route = []
 for y in range(height):
  start_route.append((0,y))

 end_route = get_end_route(img,start_x,height)
 filter_end_route = [max(list(k)) for _,k in groupby(end_route,lambda x:x[1])] # 注意这里groupby
 img1 = do_split(img,start_route,filter_end_route)
 img1.save('cuts-d-1.png')

 start_route = list(map(lambda x : (x[0]+1,x[1]),filter_end_route)) # python3中map不返回list需要自己转换
 end_route = []
 for y in range(height):
  end_route.append((width-1,y))
 img2 = do_split(img,start_route,end_route)
 img2.save('cuts-d-2.png')

if __name__ == '__main__':
 p = Image.open("cuts-2.png")
 drop_fall(p)

执行后会得到切分后的2个照片:

从这张图片来看,虽然切分成功但是效果比较一般。另外目前的代码只能对2个字符粘连的情况切分,参悟了滴水算法精髓的小伙伴可以试着改成多个字符粘连的情况。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • python实现图片中文字分割效果

    本文实例为大家分享了python实现图片中文字分割的具体代码,供大家参考,具体内容如下 1.原始图片(包含数字): 结果图: 2.原始图片(包含文字): 结果图: 3.代码如下: import cv2 import numpy as np path = 'test.jpg' root = 'output\\' # 图像resize dsize = 36 img = cv2.imread(path) data = np.array(img) height = data.shape[0] width

  • python验证码识别教程之利用投影法、连通域法分割图片

    前言 今天这篇文章主要记录一下如何切分验证码,用到的主要库就是Pillow和Linux下的图像处理工具GIMP.首先假设一个固定位置和宽度.无粘连.无干扰的例子学习一下如何使用Pillow来切割图片. 使用GIMP打开图片后,按 加号 放大图片,然后点击View->Show Grid来显示网格线: 其中,每个正方形边长为10像素,所以数字1切割坐标为左20.上20.右40.下70.以此类推可以知道剩下3个数字的切割位置. 代码如下: from PIL import Image p = Image

  • python实现图片九宫格分割

    大家都知道在微信朋友圈或者微博以及QQ动态中,有很多"强迫症患者"发图片都爱发9张,而有些图是一张图片分成的九宫图,对于这种操作,大家知道是怎么做到的吗? 本文就是用Python做的一个九宫格图片生成器,是一个打包好的exe文件,用户无需部署安装Python的开发环境,在本地就可以运行此程序,以此快速生成九宫格图片. 下面是程序的所有代码,这是一个Python GUI程序,代码不多,也很容易理解: # -*- coding: UTF-8 -*- # 将一张图片分成九张,九宫格 impo

  • python opencv实现图片旋转矩形分割

    有时候需要对有角度的矩形框内图像从原图片中分割出来.这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片. 参考:python opencv实现旋转矩形框裁减功能 修改原来的程序: 1.旋转函数的输入仅为矩形的四点坐标 2.角度由公式计算出来 3.矩形四点pt1,pt2,pt3,pt4由txt文件读入 4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题. 代码: # -*- coding:utf-8 -*- import cv2 from m

  • Python+opencv 实现图片文字的分割的方法示例

    实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor

  • python实现将文件夹内的每张图片批量分割成多张

    一.说在前面 需求:有一张长为960,宽为96的图片,需要将其分割成10张96*96的图片并存放在另外一个文件夹下,通过手工分割耗时且不规范,选择python写一个简单的程序完成. 二.源码 # -*- coding: utf-8 -*- """ Created on Thu Aug 23 18:19:09 2018 @author: Administrator """ import os from PIL import Image # 切割图片

  • python验证码识别教程之利用滴水算法分割图片

    滴水算法概述 滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题. 引言 之前提过对于有粘连的字符可以使用滴水算法来解决分割,但智商捉急的我实在是领悟不了这个算法的精髓,幸好有小伙伴已经实现相关代码. 我对上面的代码进行了一些小修改,同时升级为python3的代码. 还是以这张图片为例: 在以前的我们已经知道这种简单的粘连可以通过控制阈值来实现分割,这里我们使用滴水算法. 首先使用之前文章中介绍

  • python验证码识别教程之滑动验证码

    前言 上篇文章记录了2种分割验证码的方法,此外还有一种叫做"滴水算法"(Drop Fall Algorithm)的方法,但本人智商原因看这个算法看的云里雾里的,所以今天记录滑动验证码的处理吧.网上据说有大神已经破解了滑动验证码的算法,可以不使用selenium来破解,但本人能力不足还是使用笨方法吧. 基础原理很简单,首先点击验证码按钮后的图片是滑动后的完整结果,点击一下滑块后会出现拼图,对这2个分别截图后比较像素值来找出滑动距离,并结合selenium来实现拖拽效果. 至于seleni

  • python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别

    前言 写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字.字母的组合,国内也有使用汉字的.在这个基础上增加噪点.干扰线.变形.重叠.不同字体颜色等方法来增加识别难度. 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果

  • python验证码识别的实例详解

    其实关于验证码识别涉及很多方面的内容,入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足,对这感兴趣的朋友们下面跟着小编一起来学习学习吧. 依赖 sudo apt-get install python-imaging sudo apt-get install tesseract-ocr pip install pytesseract 利用google ocr来识别验证码 from PIL import Image import pytesseract image = Image

  • Python验证码识别的方法

    本文实例讲述了Python验证码识别的方法.分享给大家供大家参考.具体实现方法如下: #encoding=utf-8 import Image,ImageEnhance,ImageFilter import sys image_name = "./22.jpeg" #去处 干扰点 im = Image.open(image_name) im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(

  • python验证码识别实例代码

    本文研究的主要是Python验证码识别的相关代码,具体如下. Talk is cheap, show you the Code! import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from PIL import Image #打开图像 im=np.array(Image.open('yzm.png')) #得到图像3个维度 h,w,san=im.shape X=[(h-x,y

  • 爬虫Python验证码识别入门

    目录 爬虫Python验证码识别 1.批量下载验证码图片 2.识别代码看看效果 3.折腾降噪.去干扰 爬虫Python验证码识别 前言: 二值化.普通降噪.8邻域降噪 tesseract.tesserocr.PIL 参考文献--代码地址:https://github.com/liguobao/python-verify-code-ocr 1.批量下载验证码图片 import shutil import requests from loguru import logger for i in ran

  • Python验证码识别处理实例

    一.准备工作与代码实例 (1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去, (2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样! (3)Te

  • python验证码识别的示例代码

    写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字.字母的组合,国内也有使用汉字的.在这个基础上增加噪点.干扰线.变形.重叠.不同字体颜色等方法来增加识别难度. 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果的数据

随机推荐