Python 数据处理库 pandas进阶教程

前言

本文紧接着前一篇的入门教程,会介绍一些关于pandas的进阶知识。建议读者在阅读本文之前先看完pandas入门教程。

同样的,本文的测试数据和源码可以在这里获取: Github:pandas_tutorial

数据访问

在入门教程中,我们已经使用过访问数据的方法。这里我们再集中看一下。

注:这里的数据访问方法既适用于Series,也适用于DataFrame

基础方法:[]和.

这是两种最直观的方法,任何有面向对象编程经验的人应该都很容易理解。下面是一个代码示例:

# select_data.py

import pandas as pd
import numpy as np

series1 = pd.Series([1, 2, 3, 4, 5, 6, 7],
 index=["C", "D", "E", "F", "G", "A", "B"])

print("series1['E'] = {} \n".format(series1['E']));
print("series1.E = {} \n".format(series1.E));

这段代码输出如下:

series1['E'] = 3
series1.E = 3

注1:对于类似属性的访问方式.来说,要求索引元素必须是有效的Python标识符的时候才可以,而对于series1.1这样的索引是不行的。

注2:[]和.提供了简单和快速访问pands数据结构的方法。这种方法非常的直观。然而,由于要访问的数据类型并不是事先知道的,因此使用这两种方法方式存在一些优化限制。因此对于产品级的代码来说,pandas官方建议使用pandas库中提供的数据访问方法。

loc与iloc

在入门教程中,我们已经提到了这两个操作符:

  • loc:通过行和列的索引来访问数据
  • iloc:通过行和列的下标来访问数据

注意:索引的类型可能是整数。

实际上,当DataFrame通过这两个操作符访问数据,可以只指定一个索引来访问一行的数据,例如:

# select_data.py

df1 = pd.DataFrame({"note" : ["C", "D", "E", "F", "G", "A", "B"],
 "weekday": ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]},
 index=['1', '2', '3', '4', '5', '6', '7'])
print("df1.loc['2']:\n{}\n".format(df1.loc['2']))

这里通过索引'2'可以方法到第2行的所有数据,因此它的输出如下:

df1.loc['2']:
note D
weekday Tue
Name: 2, dtype: object

除此之外,通过这两个操作符我们还可以访问某个范围之内的数据,例如这样:

# select_data.py

print("series1.loc['E':'A']=\n{}\n".format(series1.loc['E':'A']));
print("df1.iloc[2:4]=\n{}\n".format(df1.iloc[2:4]))

这段代码输出如下:

series1.loc['E':'A']=
E    3
F    4
G    5
A    6
dtype: int64

df1.iloc[2:3]=
  note weekday
3    E     Wed
4    F     Thu

at与iat

这两个操作符用来访问单个的元素值(Scalar Value)。类似的:

  • at:通过行和列的索引来访问数据
  • iat:通过行和列的下标来访问数据
# select_data.py

print("series1.at['E']={}\n".format(series1.at['E']));
print("df1.iloc[4,1]={}\n".format(df1.iloc[4,1]))

这两行代码输出如下:

series1.at['E']=3

df1.iloc[4,1]=Fri

Index对象

在入门教程我们也已经简单介绍过Index,Index提供了查找,数据对齐和重新索引所需的基础数据结构。

最直接的,我们可以通过一个数组来创建Index对象。在创建的同时我们还可以通过name指定索引的名称:

# index.py

index = pd.Index(['C','D','E','F','G','A','B'], name='note')

Index类提供了很多的方法进行各种操作,这个建议读者直接查询API说明即可,这里不多做说明。稍微提一下的是,Index对象可以互相之间做集合操作,例如:

# index.py

a = pd.Index([1,2,3,4,5])
b = pd.Index([3,4,5,6,7])

print("a|b = {}\n".format(a|b))
print("a&b = {}\n".format(a&b))
print("a.difference(b) = {}\n".format(a.difference(b)))

这几个运算的结果如下:

a|b = Int64Index([1, 2, 3, 4, 5, 6, 7], dtype='int64')

a&b = Int64Index([3, 4, 5], dtype='int64')

a.difference(b) = Int64Index([1, 2], dtype='int64')

Index类有很多的子类,下面是最常见的一些:

MultiIndex

MultiIndex,或者称之为Hierarchical Index是指数据的行或者列通过多层次的标签来进行索引。

例如,我们要通过一个MultiIndex描述三个公司在三年内每个季度的营业额,可以这样:

# multiindex.py

import pandas as pd
import numpy as np

multiIndex = pd.MultiIndex.from_arrays([
 ['Geagle', 'Geagle', 'Geagle', 'Geagle',
  'Epple', 'Epple', 'Epple', 'Epple', 'Macrosoft',
  'Macrosoft', 'Macrosoft', 'Macrosoft', ],
 ['S1', 'S2', 'S3', 'S4', 'S1', 'S2', 'S3', 'S4', 'S1', 'S2', 'S3', 'S4']],
 names=('Company', 'Turnover'))

这段代码输出如下:

multiIndex =
MultiIndex(levels=[['Epple', 'Geagle', 'Macrosoft'], ['S1', 'S2', 'S3', 'S4']],
           labels=[[1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2], [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]],
           names=['Company', 'Turnover'])

从这个输出可以看出,MultiIndex中的levels数组数量对应了索引的级别数量,labels对应了levels中元素的下标。

下面我们用一个随机数来构造一个DataFrame:

# multiindex.py

df = pd.DataFrame(data=np.random.randint(0, 1000, 36).reshape(-1, 12),
     index=[2016, 2017, 2018],
     columns=multiIndex)
print("df = \n{}\n".format(df))

这里创建出了36个[0, 1000)之间的随机数,然后组装成3行12列的矩阵(如果你对NumPy不熟悉可以访问NumPy官网学习,或者看一下我之前写过的:Python 机器学习库 NumPy 教程)。

上面这段代码输出如下:

df =
Company  Geagle                Epple                Macrosoft              
Turnover     S1   S2   S3   S4    S1   S2   S3   S4        S1   S2   S3   S4
2016        329   25  553  852   833  710  247  990       215  991  535  846
2017        734  368   28  161   187  444  901  858       244  915  261  485
2018        769  707  458  782   948  169  927  237       279  438  738  708

这个输出很直观的可以看出三个公司在三年内每个季度的营业额。

有了多级索引,我们可以方便的进行数据的筛选,例如:

  • 通过df.loc[2017, (['Geagle', 'Epple', 'Macrosoft'] ,'S1')])筛选出三个公司2017年第一季度的营业额
  • 通过df.loc[2018, 'Geagle']筛选出Geagle公司2018年每个季度的营业额

它们输出如下:

2017 S1:
Company    Turnover
Geagle     S1          734
Epple      S1          187
Macrosoft  S1          244
Name: 2017, dtype: int64

Geagle 2018:
Turnover
S1    769
S2    707
S3    458
S4    782
Name: 2018, dtype: int64

数据整合

Concat:串联,连接,级连
Append:附加,增补
Merge:融合,归并,合并
Join:合并,接合,交接

Concat与Append

concat函数的作用是将多个数据串联到一起。例如,某个多条数据分散在3个地方记录,最后我们将三个数据添加到一起。下面是一个代码示例:

# concat_append.py

import pandas as pd
import numpy as np

df1 = pd.DataFrame({'Note': ['C', 'D'],
     'Weekday': ['Mon', 'Tue']},
     index=[1, 2])

df2 = pd.DataFrame({'Note': ['E', 'F'],
     'Weekday': ['Wed', 'Thu']},
     index=[3, 4])

df3 = pd.DataFrame({'Note': ['G', 'A', 'B'],
     'Weekday': ['Fri', 'Sat', 'Sun']},
     index=[5, 6, 7])

df_concat = pd.concat([df1, df2, df3], keys=['df1', 'df2', 'df3'])
print("df_concat=\n{}\n".format(df_concat))

这里我们通过keys指定了三个数据的索引划分,最后的数据中会由此存在MultiIndex。这段代码输出如下:

df_concat=
      Note Weekday
df1 1    C     Mon
    2    D     Tue
df2 3    E     Wed
    4    F     Thu
df3 5    G     Fri
    6    A     Sat
    7    B     Sun

请仔细思考一下df_concat结构与原先三个数据结构的关系:其实它就是将原先三个数据纵向串联起来了。另外,请关注一下MultiIndex结构。

concat函数默认是以axis=0(行)为主进行串联。如果需要,我们可以指定axis=1(列)为主进行串联:

# concat_append.py

df_concat_column = pd.concat([df1, df2, df3], axis=1)
print("df_concat_column=\n{}\n".format(df_concat_column))

这个结构输出如下:

df_concat_column=
  Note Weekday Note Weekday Note Weekday
1    C     Mon  NaN     NaN  NaN     NaN
2    D     Tue  NaN     NaN  NaN     NaN
3  NaN     NaN    E     Wed  NaN     NaN
4  NaN     NaN    F     Thu  NaN     NaN
5  NaN     NaN  NaN     NaN    G     Fri
6  NaN     NaN  NaN     NaN    A     Sat
7  NaN     NaN  NaN     NaN    B     Sun

请再次观察一下这里的结果和原先三个数据结构之间的关系。

concat是将多个数据串联在一起。类似的,对于某个具体的数据来说,我们可以在其数据基础上添加(append)其他数据来进行串联:

# concat_append.py

df_append = df1.append([df2, df3])
print("df_append=\n{}\n".format(df_append))

这个操作的结果和之前的concat是一样的:

df_append=
  Note Weekday
1    C     Mon
2    D     Tue
3    E     Wed
4    F     Thu
5    G     Fri
6    A     Sat
7    B     Sun

Merge与Join

pandas中的Merge操作和SQL语句中的Join操作是类似的。Join操作可以分为下面几种:

  • INNER
  • LEFT OUTER
  • RIGHT OUTER
  • FULL OUTER
  • CROSS

关于这几种的Join操作的含义请参阅其他资料,例如维基百科:Join

使用pandas进行Merge操作很简单,下面是一段代码示例:

# merge_join.py

import pandas as pd
import numpy as np

df1 = pd.DataFrame({'key': ['K1', 'K2', 'K3', 'K4'],
     'A': ['A1', 'A2', 'A3', 'A8'],
     'B': ['B1', 'B2', 'B3', 'B8']})

df2 = pd.DataFrame({'key': ['K3', 'K4', 'K5', 'K6'],
     'A': ['A3', 'A4', 'A5', 'A6'],
     'B': ['B3', 'B4', 'B5', 'B6']})

print("df1=\n{}\n".format(df1))
print("df2=\n{}\n".format(df2))

merge_df = pd.merge(df1, df2)
merge_inner = pd.merge(df1, df2, how='inner', on=['key'])
merge_left = pd.merge(df1, df2, how='left')
merge_left_on_key = pd.merge(df1, df2, how='left', on=['key'])
merge_right_on_key = pd.merge(df1, df2, how='right', on=['key'])
merge_outer = pd.merge(df1, df2, how='outer', on=['key'])

print("merge_df=\n{}\n".format(merge_df))
print("merge_inner=\n{}\n".format(merge_inner))
print("merge_left=\n{}\n".format(merge_left))
print("merge_left_on_key=\n{}\n".format(merge_left_on_key))
print("merge_right_on_key=\n{}\n".format(merge_right_on_key))
print("merge_outer=\n{}\n".format(merge_outer))

这段代码说明如下:

  • merge函数的join参数的默认值是“inner”,因此merge_df是两个数据的inner join的结果。另外,在不指明的情况下,merge函数使用所有同名的列名作为key来进行运算。
  • merge_inner是指定了列的名称进行inner join。
  • merge_left是left outer join的结果
  • merge_left_on_key是指定了列名进行left outer join的结果
  • merge_right_on_key是指定了列名进行right outer join的结果
  • merge_outer是full outer join的结果

这里的结果如下,请观察一下结果与你的预算是否一致:

df1=
    A   B key
0  A1  B1  K1
1  A2  B2  K2
2  A3  B3  K3
3  A8  B8  K4

df2=
    A   B key
0  A3  B3  K3
1  A4  B4  K4
2  A5  B5  K5
3  A6  B6  K6

merge_df=
    A   B key
0  A3  B3  K3

merge_inner=
  A_x B_x key A_y B_y
0  A3  B3  K3  A3  B3
1  A8  B8  K4  A4  B4

merge_left=
    A   B key
0  A1  B1  K1
1  A2  B2  K2
2  A3  B3  K3
3  A8  B8  K4

merge_left_on_key=
  A_x B_x key  A_y  B_y
0  A1  B1  K1  NaN  NaN
1  A2  B2  K2  NaN  NaN
2  A3  B3  K3   A3   B3
3  A8  B8  K4   A4   B4

merge_right_on_key=
   A_x  B_x key A_y B_y
0   A3   B3  K3  A3  B3
1   A8   B8  K4  A4  B4
2  NaN  NaN  K5  A5  B5
3  NaN  NaN  K6  A6  B6

merge_outer=
   A_x  B_x key  A_y  B_y
0   A1   B1  K1  NaN  NaN
1   A2   B2  K2  NaN  NaN
2   A3   B3  K3   A3   B3
3   A8   B8  K4   A4   B4
4  NaN  NaN  K5   A5   B5
5  NaN  NaN  K6   A6   B6

DataFrame也提供了join函数来根据索引进行数据合并。它可以被用于合并多个DataFrame,这些DataFrame有相同的或者类似的索引,但是没有重复的列名。默认情况下,join函数执行left join。另外,假设两个数据有相同的列名,我们可以通过lsuffixrsuffix来指定结果中列名的前缀。下面是一段代码示例:

# merge_join.py

df3 = pd.DataFrame({'key': ['K1', 'K2', 'K3', 'K4'],
     'A': ['A1', 'A2', 'A3', 'A8'],
     'B': ['B1', 'B2', 'B3', 'B8']},
     index=[0, 1, 2, 3])

df4 = pd.DataFrame({'key': ['K3', 'K4', 'K5', 'K6'],
     'C': ['A3', 'A4', 'A5', 'A6'],
     'D': ['B3', 'B4', 'B5', 'B6']},
     index=[1, 2, 3, 4])

print("df3=\n{}\n".format(df3))
print("df4=\n{}\n".format(df4))

join_df = df3.join(df4, lsuffix='_self', rsuffix='_other')
join_left = df3.join(df4, how='left', lsuffix='_self', rsuffix='_other')
join_right = df1.join(df4, how='outer', lsuffix='_self', rsuffix='_other')

print("join_df=\n{}\n".format(join_df))
print("join_left=\n{}\n".format(join_left))
print("join_right=\n{}\n".format(join_right))

这段代码输出如下:

df3=
    A   B key
0  A1  B1  K1
1  A2  B2  K2
2  A3  B3  K3
3  A8  B8  K4

df4=
    C   D key
1  A3  B3  K3
2  A4  B4  K4
3  A5  B5  K5
4  A6  B6  K6

join_df=
    A   B key_self    C    D key_other
0  A1  B1       K1  NaN  NaN       NaN
1  A2  B2       K2   A3   B3        K3
2  A3  B3       K3   A4   B4        K4
3  A8  B8       K4   A5   B5        K5

join_left=
    A   B key_self    C    D key_other
0  A1  B1       K1  NaN  NaN       NaN
1  A2  B2       K2   A3   B3        K3
2  A3  B3       K3   A4   B4        K4
3  A8  B8       K4   A5   B5        K5

join_right=
     A    B key_self    C    D key_other
0   A1   B1       K1  NaN  NaN       NaN
1   A2   B2       K2   A3   B3        K3
2   A3   B3       K3   A4   B4        K4
3   A8   B8       K4   A5   B5        K5
4  NaN  NaN      NaN   A6   B6        K6

数据集合和分组操作

很多时候,我们会需要对批量的数据进行分组统计或者再处理,groupby,agg,apply就是用来做这件事的。

  • groupby将数据分组,分组后得到pandas.core.groupby.DataFrameGroupBy类型的数据。
  • agg用来进行合计操作,agg是aggregate的别名。
  • apply用来将函数func分组化并将结果组合在一起。

这些概念都很抽象,我们还是通过代码来进行说明。

# groupby.py

import pandas as pd
import numpy as np

df = pd.DataFrame({
 'Name': ['A','A','A','B','B','B','C','C','C'],
 'Data': np.random.randint(0, 100, 9)})
print('df=\n{}\n'.format(df))

groupby = df.groupby('Name')

print("Print GroupBy:")
for name, group in groupby:
 print("Name: {}\nGroup:\n{}\n".format(name, group))

在这段代码中,我们生成了9个[0, 100)之间的随机数,数据的第一列是['A','A','A','B','B','B','C','C','C']。然后我们以Name列进行groupby,得到的结果会根据将Name列值一样的分组在一起,我们将得到的结果进行了打印。这段代码的输出如下:

df=
   Data Name
0    34    A
1    44    A
2    57    A
3    81    B
4    78    B
5    65    B
6    73    C
7    16    C
8     1    C

Print GroupBy:
Name: A
Group:
   Data Name
0    34    A
1    44    A
2    57    A

Name: B
Group:
   Data Name
3    81    B
4    78    B
5    65    B

Name: C
Group:
   Data Name
6    73    C
7    16    C
8     1    C

groupby并不是我们的最终目的,我们的目的是希望分组后还要对这些数据进行进一步的统计或者处理。pandas库本身就提供了很多进行操作的函数,例如:countsummeanmedianstdvarminmaxprodfirstlast。这些函数的名称很容易明白它的作用。

例如:groupby.sum()就是对结果进行求和运行。

除了直接调用这些函数之外,我们也可以通过agg函数来达到这个目的,这个函数接收其他函数的名称,例如这样:groupby.agg(['sum'])。

通过agg函数,可以一次性调用多个函数,并且可以为结果列指定名称。

像这样:groupby.agg([('Total', 'sum'), ('Min', 'min')])。

这里的三个调用输出结果如下:

# groupby.py

Sum:
  Data
Name
A  135
B  224
C  90

Agg Sum:
  Data
  sum
Name
A  135
B  224
C  90

Agg Map:
  Data
  Total Min
Name
A  135 34
B  224 65
C  90 1

除了对数据集合进行统计,我们也可以通过apply函数进行分组数据的处理。像这样:

# groupby.py

def sort(df):
 return df.sort_values(by='Data', ascending=False)

print("Sort Group: \n{}\n".format(groupby.apply(sort)))

在这段代码中,我们定义了一个排序函数,并应用在分组数据上,这里最终的输出如下:

Sort Group:
        Data
Name       
A    2    57
     1    44
     0    34
B    3    81
     4    78
     5    65
C    6    73
     7    16
     8     1

时间相关

时间是应用程序中很频繁需要处理的逻辑,尤其是对于金融,科技,商业等领域。

当我们在讨论时间,我们讨论的可能是下面三种情况中的一种:

  • 某个具体的时间点(Timestamp),例如:今天下午一点整
  • 某个时间范围(Period),例如:整个这个月
  • 某个时间间隔(Interval),例如:每周二上午七点整

Python语言提供了时间日期相关的基本API,它们位于datetime, time, calendar几个模块中。下面是一个代码示例:

# time.py

import datetime as dt
import numpy as np
import pandas as pd

now = dt.datetime.now();
print("Now is {}".format(now))

yesterday = now - dt.timedelta(1);
print("Yesterday is {}\n".format(yesterday.strftime('%Y-%m-%d')))

在这段代码中,我们打印了今天的日期,并通过timedelta进行了日期的减法运算。这段代码输出如下:

借助pandas提供的接口,我们可以很方便的获得以某个时间间隔的时间序列,例如这样:

# time.py

this_year = pd.date_range(dt.datetime(2018, 1, 1),
  dt.datetime(2018, 12, 31), freq='5D')
print("Selected days in 2018: \n{}\n".format(this_year))

这段代码获取了整个2018年中从元旦开始,每隔5天的日期序列。

date_range函数的详细说明见这里:pandas.date_range

这段代码的输出如下:

Selected days in 2018:
DatetimeIndex(['2018-01-01', '2018-01-06', '2018-01-11', '2018-01-16',
               '2018-01-21', '2018-01-26', '2018-01-31', '2018-02-05',
               '2018-02-10', '2018-02-15', '2018-02-20', '2018-02-25',
               '2018-03-02', '2018-03-07', '2018-03-12', '2018-03-17',
               '2018-03-22', '2018-03-27', '2018-04-01', '2018-04-06',
               '2018-04-11', '2018-04-16', '2018-04-21', '2018-04-26',
               '2018-05-01', '2018-05-06', '2018-05-11', '2018-05-16',
               '2018-05-21', '2018-05-26', '2018-05-31', '2018-06-05',
               '2018-06-10', '2018-06-15', '2018-06-20', '2018-06-25',
               '2018-06-30', '2018-07-05', '2018-07-10', '2018-07-15',
               '2018-07-20', '2018-07-25', '2018-07-30', '2018-08-04',
               '2018-08-09', '2018-08-14', '2018-08-19', '2018-08-24',
               '2018-08-29', '2018-09-03', '2018-09-08', '2018-09-13',
               '2018-09-18', '2018-09-23', '2018-09-28', '2018-10-03',
               '2018-10-08', '2018-10-13', '2018-10-18', '2018-10-23',
               '2018-10-28', '2018-11-02', '2018-11-07', '2018-11-12',
               '2018-11-17', '2018-11-22', '2018-11-27', '2018-12-02',
               '2018-12-07', '2018-12-12', '2018-12-17', '2018-12-22',
               '2018-12-27'],
              dtype='datetime64[ns]', freq='5D')

我们得到的返回值是DatetimeIndex类型的,我们可以创建一个DataFrame并以此作为索引:

# time.py

df = pd.DataFrame(np.random.randint(0, 100, this_year.size), index=this_year)
print("Jan: \n{}\n".format(df['2018-01']))

在这段代码中,我们创建了与索引数量一样多的[0, 100)间的随机整数,并用this_year作为索引。用DatetimeIndex作索引的好处是,我们可以直接指定某个范围来选择数据,例如,通过df['2018-01']选出所有1月份的数据。

这段代码输出如下:

图形展示

pandas的图形展示依赖于matplotlib库。对于这个库,我们在后面会专门讲解,因为这里仅仅提供一个简单的代码示例,让大家感受一下图形展示的样子。

代码示例如下:

# plot.py

import matplotlib.pyplot as plt
import pandas as pd

data = pd.read_csv("data/housing.csv")
data.hist(bins=50, figsize=(15, 12))
plt.show()

这段代码读取了一个CSV文件,这个文件中包含了一些关于房价的信息。在读取完之后,通过直方图(hist)将其展示了出来。

该CSV文件的内容见这里:pandas_tutorial/data/housing.csv

直方图结果如下所示:

结束语

虽然本文的标题是“进阶篇”,我们也讨论了一些更深入的知识。但很显然,这对于pandas来说,仍然是很皮毛的东西。由于篇幅所限,更多的内容在今后的时候,有机会我们再来一起探讨。

读者朋友也可以根据官网上的文档进行更深入的学习。

参考资料与推荐读物

您可能感兴趣的文章:

  • 对python .txt文件读取及数据处理方法总结
  • Python 数据处理库 pandas 入门教程基本操作
  • Python数据处理numpy.median的实例讲解
  • python数据处理实战(必看篇)
  • 基于python爬虫数据处理(详解)
  • python实现爬虫统计学校BBS男女比例之数据处理(三)
  • 从零学python系列之数据处理编程实例(二)
  • 从零学python系列之数据处理编程实例(一)
  • 浅析Python数据处理
(0)

相关推荐

  • Python 数据处理库 pandas 入门教程基本操作

    pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有表现力的数据结构,目的是使"关系"或"标记"数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块. 入门介绍 pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据.

  • 对python .txt文件读取及数据处理方法总结

    1.处理包含数据的文件 最近利用Python读取txt文件时遇到了一个小问题,就是在计算两个np.narray()类型的数组时,出现了以下错误: TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U3') dtype('<U3') dtype('<U3') 作为一个Python新手,遇到这个问题后花费了挺多时间,在网上找了许多大神们写的例子,最后终于解决了. 总

  • 基于python爬虫数据处理(详解)

    一.首先理解下面几个函数 设置变量 length()函数 char_length() replace() 函数 max() 函数 1.1.设置变量 set @变量名=值 set @address='中国-山东省-聊城市-莘县'; select @address 1.2 .length()函数 char_length()函数区别 select length('a') ,char_length('a') ,length('中') ,char_length('中') 1.3. replace() 函数

  • 从零学python系列之数据处理编程实例(一)

    要求:分别以james,julie,mikey,sarah四个学生的名字建立文本文件,分别存储各自的成绩,时间格式都精确为分秒,时间越短成绩越好,分别输出每个学生的无重复的前三个最好成绩,且分秒的分隔符要统一为"." 数据准备:分别建立四个文本文件 james.txt     2-34,3:21,2.34,2.45,3.01,2:01,2:01,3:10,2-22 julie.txt        2.59,2.11,2:11,2:23,3-10,2-23,3:10,3.21,3-21

  • python实现爬虫统计学校BBS男女比例之数据处理(三)

    本文主要介绍了数据处理方面的内容,希望大家仔细阅读. 一.数据分析 得到了以下列字符串开头的文本数据,我们需要进行处理 二.回滚 我们需要对httperror的数据进行再处理 因为代码的原因,具体可见本系列文章(二),会导致文本里面同一个id连续出现几次httperror记录: //httperror265001_266001.txt 265002 httperror 265002 httperror 265002 httperror 265002 httperror 265003 httper

  • Python数据处理numpy.median的实例讲解

    numpy模块下的median作用为: 计算沿指定轴的中位数 返回数组元素的中位数 其函数接口为: median(a, axis=None, out=None, overwrite_input=False, keepdims=False) 其中各参数为: a:输入的数组: axis:计算哪个轴上的中位数,比如输入是二维数组,那么axis=0对应行,axis=1对应列: out:用于放置求取中位数后的数组. 它必须具有与预期输出相同的形状和缓冲区长度: overwrite_input:一个bool

  • 从零学python系列之数据处理编程实例(二)

    在上一节从零学python系列之数据处理编程实例(一)的基础上数据发生了变化,文件中除了学生的成绩外,新增了学生姓名和出生年月的信息,因此将要成变成:分别根据姓名输出每个学生的无重复的前三个最好成绩和出生年月 数据准备:分别建立四个文本文件 james2.txt     James Lee,2002-3-14,2-34,3:21,2.34,2.45,3.01,2:01,2:01,3:10,2-22 julie2.txt        Julie Jones,2002-8-17,2.59,2.11

  • python数据处理实战(必看篇)

    一.运行环境 1.python版本 2.7.13 博客代码均是这个版本 2.系统环境:win7 64位系统 二.需求 对杂乱文本数据进行处理 部分数据截图如下,第一个字段是原字段,后面3个是清洗出的字段,从数据库中聚合字段观察,乍一看数据比较规律,类似(币种 金额 万元)这样,我想着用sql写条件判断,统一转换为'万元人民币' 单位,用sql脚本进行字符串截取即可完成,但是后面发现数据并不规则,条件判断太多清洗质量也不一定,有的前面不是左括号,有的字段里面没有币种,有的数字并不是整数,有的没有万

  • 浅析Python数据处理

    Numpy.Pandas是Python数据处理中经常用到的两个框架,都是采用C语言编写,所以运算速度快.Matplotlib是Python的的画图工具,可以把之前处理后的数据通过图像绘制出来.之前只是看过语法,没有系统学习总结过,本博文总结了这三个框架的API. 以下是这三个框架的的简单介绍和区别: Numpy:经常用于数据生成和一些运算 Pandas:基于Numpy构建的,是Numpy的升级版本 Matplotlib:Python中强大的绘图工具 Numpy Numpy快速入门教程可参考:Nu

  • Python 数据处理库 pandas进阶教程

    前言 本文紧接着前一篇的入门教程,会介绍一些关于pandas的进阶知识.建议读者在阅读本文之前先看完pandas入门教程. 同样的,本文的测试数据和源码可以在这里获取: Github:pandas_tutorial. 数据访问 在入门教程中,我们已经使用过访问数据的方法.这里我们再集中看一下. 注:这里的数据访问方法既适用于Series,也适用于DataFrame. 基础方法:[]和. 这是两种最直观的方法,任何有面向对象编程经验的人应该都很容易理解.下面是一个代码示例: # select_da

  • Python 第三方库 Pandas 数据分析教程

    目录 Pandas导入 Pandas与numpy的比较 Pandas的Series类型 Pandas的Series类型的创建 Pandas的Series类型的基本操作 pandas的DataFrame类型 pandas的DataFrame类型创建 Pandas的Dataframe类型的基本操作 pandas索引操作 pandas重新索引 pandas删除索引 pandas数据运算 算术运算 Pandas数据分析 pandas导入与导出数据 导入数据 导出数据 Pandas查看.检查数据 Pand

  • Python 机器学习库 NumPy入门教程

    NumPy是一个Python语言的软件包,它非常适合于科学计算.在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库. 本文是对它的一个入门教程. 介绍 NumPy是一个用于科技计算的基础软件包,它是Python语言实现的.它包含了: 强大的N维数组结构 精密复杂的函数 可集成到C/C++和Fortran代码的工具 线性代数,傅里叶变换以及随机数能力 除了科学计算的用途以外,NumPy也可被用作高效的通用数据的多维容器.由于它适用于任意类型的数据,这使得NumPy可以无缝和

  • python数据处理——对pandas进行数据变频或插值实例

    这里首先要介绍官方文档,对python有了进一步深度的学习的大家们应该会发现,网上不管csdn或者简书上还是什么地方,教程来源基本就是官方文档,所以英语只要还过的去,推荐看官方文档,就算不够好,也可以只看它里面的sample就够了 好了,不说废话,看我的代码: import pandas as pd import numpy as np rng = pd.date_range('20180101', periods=40) ts = pd.Series(np.arange(1,41), inde

  • python扩展库numpy入门教程

    目录 一.numpy是什么? 二.numpy数组 2.1 数组使用 2.2 创建数组 1. 使用empty创建空数组 2. 使用arange函数创建 3. 使用zeros函数生成数组 4. ones函数生成数组 5. diag函数生成对角矩阵 6. N维数组 2.3 访问数组元素 三.了解矩阵 3.1 广播 一.numpy是什么? 扩展库numpy是Python支持科学计算的重要扩展库,是数据分析和科学计算领域如scipy.pandas.sklearn 等众多扩展库中的必备扩展库之一,提供了强大

  • python数据处理之Pandas类型转换的实现

    目录 转换为字符串类型 转换为数值类型 转为数值类型还可以使用to_numeric()函数 分类数据(Category) 数据类型小结 转换为字符串类型 tips['sex_str'] = tips['sex'].astype(str) 转换为数值类型 转为数值类型还可以使用to_numeric()函数 DataFrame每一列的数据类型必须相同,当有些数据中有缺失,但不是NaN时(如missing,null等),会使整列数据变成字符串类型而不是数值型,这个时候可以使用to_numeric处理

  • Python数据分析库pandas基本操作方法

    pandas是什么? 是它吗? ....很显然pandas没有这个家伙那么可爱.... 我们来看看pandas的官网是怎么来定义自己的: pandas is an open source, easy-to-use data structures and data analysis tools for the Python programming language. 很显然,pandas是python的一个非常强大的数据分析库! 让我们来学习一下它吧! 1.pandas序列 import nump

  • Python sklearn库实现PCA教程(以鸢尾花分类为例)

    PCA简介 主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等.矩阵的主成分就是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值就是第一主成分,其次是第二主成分,以此类推. 基本步骤: 具体实现 我们通过Python的sklearn库来实现鸢尾花数据进行降维,数据本身是4维的降维后变成2维,可以在平面中画出样本点的分布.样本数据结构如下图: 其中样本总数为150

  • 音频处理 windows10下python三方库librosa安装教程

    librosa是处理音频库里的opencv,使用python脚本研究音频,先安装三方库librosa. 如下通过清华镜像源安装librosa: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple librosa D:\D00_Python3\D00A2_python3.7.3\install>pip install -i https://pypi.tuna.tsinghua.edu.cn/simple librosa   Looking

随机推荐