初步解析Python中的yield函数的用法

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数

def fab(max):
 n, a, b = 0, 0, 1
 while n < max:
  print b
  a, b = b, a + b
  n = n + 1

执行 fab(5),我们可以得到如下输出:

>>> fab(5)
1
1
2
3
5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版

def fab(max):
 n, a, b = 0, 0, 1
 L = []
 while n < max:
  L.append(b)
  a, b = b, a + b
  n = n + 1
 return L

可以使用如下方式打印出 fab 函数返回的 List:

>>> for n in fab(5):
...  print n
...
1
1
2
3
5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:

for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本

class Fab(object):

 def __init__(self, max):
  self.max = max
  self.n, self.a, self.b = 0, 0, 1

 def __iter__(self):
  return self

 def next(self):
  if self.n < self.max:
   r = self.b
   self.a, self.b = self.b, self.a + self.b
   self.n = self.n + 1
   return r
  raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

>>> for n in Fab(5):
...  print n
...

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版

def fab(max):
 n, a, b = 0, 0, 1
 while n < max:
  yield b
  # print b
  a, b = b, a + b
  n = n + 1

'''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

>>> for n in fab(5):
...  print n
...

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

>>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True

fab 是无法迭代的,而 fab(5) 是可迭代的:

>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

>>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子

def read_file(fpath):
 BLOCK_SIZE = 1024
 with open(fpath, 'rb') as f:
  while True:
   block = f.read(BLOCK_SIZE)
   if block:
    yield block
   else:
    return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过

(0)

相关推荐

  • Python中生成器和yield语句的用法详解

    在开始课程之前,我要求学生们填写一份调查表,这个调查表反映了它们对Python中一些概念的理解情况.一些话题("if/else控制流" 或者 "定义和使用函数")对于大多数学生是没有问题的.但是有一些话题,大多数学生只有很少,或者完全没有任何接触,尤其是"生成器和yield关键字".我猜这对大多数新手Python程序员也是如此. 有事实表明,在我花了大功夫后,有些人仍然不能理解生成器和yield关键字.我想让这个问题有所改善.在这篇文章中,我将解

  • Python 深入理解yield

    只是粗略的知道yield可以用来为一个函数返回值塞数据,比如下面的例子: Code highlighting produced by Actipro CodeHighlighter (freeware) http://www.CodeHighlighter.com/ -->def addlist(alist):    for i in alist:        yield i + 1取出alist的每一项,然后把i + 1塞进去.然后通过调用取出每一项: Code highlighting p

  • 详解Python3中yield生成器的用法

    任何使用yield的函数都称之为生成器,如: def count(n): while n > 0: yield n #生成值:n n -= 1 另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成器包含yield语句,更简单点理解生成器就是一个迭代器. 使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调用next()方法返回序列值. c = count(5) c.__next__() #python 3.4.3要

  • 初步解析Python中的yield函数的用法

    您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念. 如何生成斐波那契數列 斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到.用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数: 清单 1. 简单输出斐波那契數列前 N 个数 def

  • python中time tzset()函数实例用法

    在时间的设置方面,为了能够跟系统时间有更好的区分,我们有时会借用一些函数方法来实现.就拿tzset()来说是设置时间的一种方法,其内在的变量依靠TZ的控制,如果没有设置TZ则以系统时间为准.接下来我们简单就time tzset().TZ进行说明,并对函数的语法.参数.返回值.实例带来使用介绍. 1.说明 tzset()主要用于设置时间变量,它通过获取TZ环境变量初始化tzname变量,在类System-V系统中,它同时设置timezone(相对UTC以西的秒数,向西为正,向东为负)和daylig

  • python中去空格函数的用法

    本文简单介绍了Python中去空格函数的用法,这是一个很实用的函数,希望对大家的Python程序设计有所帮助.具体分析如下: 在Python中字符串处理函数里有三个去空格的函数: strip 同时去掉左右两边的空格 lstrip 去掉左边的空格 rstrip 去掉右边的空格 具体示例如下: >>>a=" gho stwwl " >>>a.lstrip() 'gho stwwl ' >>>a.rstrip() ' gho stwwl'

  • python中re.findall函数实例用法

    1.findall函数返回字符串中所有匹配结果的正则表达式列表. 2.如果没有分组的正则是返回的正则匹配,分组返回的是分组匹配而非整个正则匹配. 实例 找到所有与pattern匹配的子串(不重叠),并将其放入列表. import re lst = re.findall("[1-9]\d*","qw21313h1o58p4kjh8123jkh8435u") for x in lst: print(x,end=" ") #输出结果:21313 1 5

  • 深入解析Python中的lambda表达式的用法

    普通的数学运算用这个纯抽象的符号演算来定义,计算结果只能在脑子里存在.所以写了点代码,来验证文章中介绍的演算规则. 我们来验证文章里介绍的自然数及自然数运算规则.说到自然数,今天还百度了一下,据度娘说,1993年后国家规定0是属于自然数.先定义自然数及自然数的运算规则: 用lambda表达式定义自然数(邱齐数) 0 := λf.λx.x 1 := λf.λx.f x 2 := λf.λx.f (f x) 3 := λf.λx.f (f (f x)) ... 上面定义直观的意思就是数字n, 是f(

  • 详解Python中的join()函数的用法

    函数:string.join() Python中有join()和os.path.join()两个函数,具体作用如下:     join():    连接字符串数组.将字符串.元组.列表中的元素以指定的字符(分隔符)连接生成一个新的字符串     os.path.join():  将多个路径组合后返回 一.函数说明 1.join()函数 语法:  'sep'.join(seq) 参数说明 sep:分隔符.可以为空 seq:要连接的元素序列.字符串.元组.字典 上面的语法即:以sep作为分隔符,将s

  • Python中的filter()函数的用法

    Python内建的filter()函数用于过滤序列. 和map()类似,filter()也接收一个函数和一个序列.和map()不同的时,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素. 例如,在一个list中,删掉偶数,只保留奇数,可以这么写: def is_odd(n): return n % 2 == 1 filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]) # 结果: [1, 5, 9, 15]

  • python中numpy.empty()函数实例讲解

    在使用python编程的过程中,想要快速的创建ndarray数组,可以使用numpy.empty()函数.numpy.empty()函数所创建的数组内所有元素均为空,没有实际意义,所以它也是创建数组最快的方法.本文介绍python中numpy.empty()函数的使用方法. 1.numpy.empty()函数 这个函数可以创建一个没有任何具体值的ndarray数组,是创建数组最快的方法. 根据给定的维度和数值类型返回一个新的数组,其元素不进行初始化. 2.用法 import numpy as n

  • Python中json.dumps()函数的使用解析

    json.dumps将一个Python数据结构转换为JSON import json data = { 'name' : 'myname', 'age' : 100, } json_str = json.dumps(data) json库的一些用法 方法 作用 json.dumps() 将python对象编码成Json字符串 json.loads() 将Json字符串解码成python对象 json.dump() 将python中的对象转化成json储存到文件中 json.load() 将文件中

  • 源码解析python中randint函数的效率缺陷

    目录 一.前言 二.对randint()运行效率的测试 三.从源码分析randint()的缺陷 random.random() random.randint() 四.更快的生成随机整数的方法 random.random() 直接使用 getrandbits() 使用 Numpy.random 一.前言 前几天,在写一个与差分隐私相关的简单程序时,我发现了一些奇怪的东西:相对于其他的随机数生成函数,Python的random.randint()函数感觉很慢. 由于 randint() 是 Pyth

随机推荐