python程序中的线程操作 concurrent模块使用详解

一、concurrent模块的介绍

concurrent.futures模块提供了高度封装的异步调用接口

ThreadPoolExecutor:线程池,提供异步调用

ProcessPoolExecutor:进程池,提供异步调用

ProcessPoolExecutorThreadPoolExecutor:两者都实现相同的接口,该接口由抽象Executor类定义。

二、基本方法

submit(fn, *args, **kwargs) :异步提交任务

map(func, *iterables, timeout=None, chunksize=1) :取代for循环submit的操作

shutdown(wait=True) :相当于进程池的pool.close()+pool.join()操作

  • wait=True,等待池内所有任务执行完毕回收完资源后才继续
  • wait=False,立即返回,并不会等待池内的任务执行完毕
  • 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
  • submit和map必须在shutdown之前

result(timeout=None) :取得结果

add_done_callback(fn) :回调函数

三、进程池和线程池

池的功能:限制进程数或线程数.

什么时候限制: 当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量 我就应该考虑去限制我进程数或线程数,从保证服务器不崩.

3.1 进程池

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Process,current_process
import time
def task(i):
  print(f'{current_process().name} 在执行任务{i}')
  time.sleep(1)
if __name__ == '__main__':
  pool = ProcessPoolExecutor(4) # 进程池里又4个进程
  for i in range(20): # 20个任务
    pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个进程一次一次执行任务

3.2 线程池

from concurrent.futures import ThreadPoolExecutor
from threading import Thread,currentThread
import time
def task(i):
  print(f'{currentThread().name} 在执行任务{i}')
  time.sleep(1)
if __name__ == '__main__':
  pool = ThreadPoolExecutor(4) # 进程池里又4个线程
  for i in range(20): # 20个任务
    pool.submit(task,i)# 线程池里当前执行的任务i,池子里的4个线程一次一次执行任务

四、Map的用法

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import os,time,random
def task(n):
  print('%s is runing' %os.getpid())
  time.sleep(random.randint(1,3))
  return n**2
if __name__ == '__main__':
  executor=ThreadPoolExecutor(max_workers=3)
  # for i in range(20):
  #   future=executor.submit(task,i)
  executor.map(task,range(1,21)) #map取代了for+submit

五、同步和异步

理解为提交任务的两种方式

同步: 提交了一个任务,必须等任务执行完了(拿到返回值),才能执行下一行代码

异步: 提交了一个任务,不要等执行完了,可以直接执行下一行代码.

同步:相当于执行任务的串行执行

异步

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Process,current_process
import time
n = 1
def task(i):
  global n
  print(f'{current_process().name} 在执行任务{i}')
  time.sleep(1)
  n += i
  return n
if __name__ == '__main__':
  pool = ProcessPoolExecutor(4) # 进程池里又4个线程
  pool_lis = []
  for i in range(20): # 20个任务
    future = pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个线程一次一次执行任务
    # print(future.result()) # 这是在等待我执行任务得到的结果,如果一直没有结果,这里会导致我们所有任务编程了串行
                # 在这里就引出了下面的pool.shutdown()方法
    pool_lis.append(future)
  pool.shutdown(wait=True) # 关闭了池的入口,不允许在往里面添加任务了,会等带所有的任务执行完,结束阻塞
  for p in pool_lis:
    print(p.result())
  print(n)# 这里一开始肯定是拿到0的,因为我只是去告诉操作系统执行子进程的任务,代码依然会继续往下执行
  # 可以用join去解决,等待每一个进程结束后,拿到他的结果

六、回调函数

import time
from threading import Thread,currentThread
from concurrent.futures import ThreadPoolExecutor
def task(i):
  print(f'{currentThread().name} 在执行{i}')
  time.sleep(1)
  return i**2

# parse 就是一个回调函数
def parse(future):
  # 处理拿到的结果
  print(f'{currentThread().name} 结束了当前任务')
  print(future.result())
if __name__ == '__main__':
  pool = ThreadPoolExecutor(4)
  for i in range(20):
    future = pool.submit(task,i)
    '''
    给当前执行的任务绑定了一个函数,在当前任务结束的时候就会触发这个函数(称之为回调函数)
    会把future对象作为参数传给函数
    注:这个称为回调函数,当前任务处理结束了,就回来调parse这个函数
    '''
    future.add_done_callback(parse)
    # add_done_callback (parse) parse是一个回调函数
    # add_done_callback () 是对象的一个绑定方法,他的参数就是一个函数

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python多线程编程之多线程加锁操作示例

    本文实例讲述了Python多线程编程之多线程加锁操作.分享给大家供大家参考,具体如下: Python语言本身是支持多线程的,不像PHP语言. 下面的例子是多个线程做同一批任务,任务总是有task_num个,每次线程做一个任务(print),做完后继续取任务,直到所有任务完成为止. # -*- coding:utf-8 -*- #! python2 import threading start_task = 0 task_num = 10000 mu = threading.Lock() ###通

  • Python基于多线程操作数据库相关问题分析

    本文实例分析了Python多线程操作数据库相关问题.分享给大家供大家参考,具体如下: python多线程并发操作数据库,会存在链接数据库超时.数据库连接丢失.数据库操作超时等问题. 解决方法:使用数据库连接池,并且每次操作都从数据库连接池获取数据库操作句柄,操作完关闭连接返回数据库连接池. *连接数据库需要设置charset = 'utf8', use_unicode = True,不然会报中文乱码问题 *网上说解决python多线程并发操作数据库问题,连接时使用self.conn.ping(T

  • Python多线程和队列操作实例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 复制代码 代码如下: #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue):         super().__in

  • Python mutiprocessing多线程池pool操作示例

    本文实例讲述了Python mutiprocessing多线程池pool操作.分享给大家供大家参考,具体如下: python - mutiprocessing 多线程 pool 脚本代码: root@72132server:~/python/multiprocess# ls multiprocess_pool.py multprocess.py root@72132server:~/python/multiprocess# cat multiprocess_pool.py #!/usr/bin/

  • python多线程操作实例

    一.python多线程 因为CPython的实现使用了Global Interpereter Lock(GIL),使得python中同一时刻只有一个线程在执行,从而简化了python解释器的实现,且python对象模型天然地线程安全.如果你想你的应用程序在多核的机器上使用更好的资源,建议使用multiprocessing或concurrent.futures.processpoolexecutor.但是如果你的程序是IO密集型,则使用线程仍然是很好的选择. 二.python多线程使用的两种方法

  • Python3多线程操作简单示例

    本文实例讲述了Python3多线程操作.分享给大家供大家参考,具体如下: python3 线程中常用的两个模块为: _thread threading(推荐使用) thread 模块已被废弃.用户可以使用 threading 模块代替.所以,在 python3 中不能再使用"thread" 模块.为了兼容性,python3 将 thread 重命名为 "_thread". test.py # -*- coding:utf-8 -*- #!/usr/bin/pytho

  • Python多线程应用于自动化测试操作示例

    本文实例讲述了Python多线程应用于自动化测试操作.分享给大家供大家参考,具体如下: 多线程执行测试用例 实例: import threading from time import sleep,ctime from selenium import webdriver #测试用例1 def test_baidu(browser,search): print("开始,现在时间是%s"%ctime()) print("浏览器是%s"%browser) if browse

  • python程序中的线程操作 concurrent模块使用详解

    一.concurrent模块的介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor:进程池,提供异步调用 ProcessPoolExecutor 和 ThreadPoolExecutor:两者都实现相同的接口,该接口由抽象Executor类定义. 二.基本方法 submit(fn, *args, **kwargs) :异步提交任务 map(func, *iterables,

  • Python语法学习之线程的创建与常用方法详解

    目录 线程的创建与使用 线程的创建 -threading 线程对象的常用方法 线程演示案例 线程的问题 线程的创建与使用 在Python中有很多的多线程模块,其中 threading 模块就是比较常用的.下面就来看一下如何利用 threading 创建线程以及它的常用方法. 线程的创建 -threading 函数名 介绍 举例 Thread 创建线程 Thread(target, args) Thread 的动能介绍:通过调用 threading 模块的 Thread 类来实例化一个线程对象:它

  • Python程序包的构建和发布过程示例详解

    关于我 编程界的一名小程序猿,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. 联系:hylinux1024@gmail.com 当我们开发了一个开源项目时,就希望把这个项目打包然后发布到 pypi.org 上,别人就可以通过 pip install 的命令进行安装.本文的教程来自于 Python 官方文档 , 如有不正确的地方欢迎评论拍砖. 0x00 创建项目 本文使用到的项目目录为 ➜ packaging-tuto

  • python 函数中的内置函数及用法详解

    今天来介绍一下Python解释器包含的一系列的内置函数,下面表格按字母顺序列出了内置函数: 下面就一一介绍一下内置函数的用法: 1.abs() 返回一个数值的绝对值,可以是整数或浮点数等. print(abs(-18)) print(abs(0.15)) result: 18 0.15 2.all(iterable) 如果iterable的所有元素不为0.''.False或者iterable为空,all(iterable)返回True,否则返回False. print(all(['a','b',

  • Python对象中__del__方法起作用的条件详解

    对象的__del__是对象在被gc消除回收的时候起作用的一个方法,它的执行一般也就意味着对象不能够继续引用. 示范代码如下: class Demo: def __del__(self): print("calling __del__") obj = Demo() del obj 程序执行结果如下: grey@DESKTOP-3T80NPQ:/mnt/e/01_workspace/02_programme_language/03_python/03_OOP/2017/08$python

  • 如何在程序中判断VS的版本(实现方法详解)

    代码如下所示: #include<iostream> using namespace std; int main() { cout << _MSC_VER << endl; return 0; } 在VC6.0中结果为:1200 在VC10.0(VS2010)中结果为:1600 _MSC_VER实际就是 Microsoft visual c++ version(是微软的预定义宏). 具体对应如下: MS VC++ 14.0 _MSC_VER = 1900(VS2015)

  • 在Spring Boot应用程序中使用Apache Kafka的方法步骤详解

    第1步:生成我们的项目: Spring Initializr来生成我们的项目.我们的项目将提供Spring MVC / Web支持和Apache Kafka支持. 第2步:发布/读取Kafka主题中的消息: <b>public</b> <b>class</b> User { <b>private</b> String name; <b>private</b> <b>int</b> age

  • 对python PLT中的image和skimage处理图片方法详解

    用PLT比较轻量级,用opencv是比较重量级 import numpy as np from PIL import Image if __name__ == '__main__': image_file = '/Users/mac/Documents/学习文档/机器学习/5.Package/son.png' height = 100 #假定写入图片的高度是100 img = Image.open(image_file) img_width, img_height = img.size #获取i

  • 微信小程序中的列表切换功能实例代码详解

    感觉这列表切换有点类似于轮播图,而且感觉这代码直接可以拿来用,稍微改一改样式什么的就OK了,列表切换也是用到的地方也很多 wxml中的代码如下: <!-- 标签页面标题 --> <view class="tab"> <view class="tab-item {{tab==0?'active':''}}" bindtap="changeItem" data-item="0">音乐推荐<

  • python编程中简洁优雅的推导式示例详解

    目录 1. 列表推导式 增加条件语句 多重循环 更多用法 2. 字典推导式 3. 集合推导式 4. 元组推导式 Python语言有一种独特的推导式语法,相当于语法糖的存在,可以帮助你在某些场合写出较为精简酷炫的代码.但没有它,也不会有太多影响.Python语言有几种不同类型的推导式. 1. 列表推导式 列表推导式是一种快速生成列表的方式.其形式是用方括号括起来的一段语句,如下例子所示: lis = [x * x for x in range(1, 10)] print(lis) 输出 [1, 4

随机推荐