ReentrantLock重入锁底层原理示例解析

目录
  • J.U.C 简介
  • Lock
    • Lock 简介
    • Lock 的实现
    • Lock 的类关系图
    • 常用API
  • ReentrantLock 重入锁
    • 重入锁的设计目的
    • ReentrantLock 的使用案例
    • ReentrantReadWriteLock
  • ReentrantLock 的实现原理
    • AQS 是什么
    • AQS 的两种功能
    • AQS 的内部实现
  • Node 的组成
    • 释放锁以及添加线程对于队列的变化
  • ReentrantLock 的源码分析
    • ReentrantLock 的时序图
    • NofairSync.lock
    • CAS 的实现原理

J.U.C 简介

Java.util.concurrent 是在并发编程中比较常用的工具类,里面包含很多用来在并发场景中使用的组件。比如线程池、阻塞队列、计时器、同步器、并发集合等等。并发包的作者是大名鼎鼎的 Doug Lea。

Lock

Lock 在 J.U.C 中是最核心的组件,锁最重要的特性就是解决并发安全问题。为什么要以 Lock 作为切入点呢?
如果你有看过 J.U.C 包中的所有组件,一定会发现绝大部分的组件都有用到了 Lock。所以通过 Lock 作为切入点使得在后续的学习过程中会更加轻松。

Lock 简介

在 Lock 接口出现之前,Java 中的应用程序对于多线程的并发安全处理只能基于 synchronized 关键字来解决。但是 synchronized 在有些场景中会存在一些短板,也就是它并不适合于所有的并发场景。但是在 Java5 以后,Lock 的出现可以解决 synchronized 在某些场景中的短板,它比 synchronized 更加灵活。

Lock 的实现

Lock 本质上是一个接口,它定义了释放锁和获得锁的抽象方法,定义成接口就意味着它定义了锁的一个标准规范,也同时意味着锁的不同实现。
实现 Lock 接口的类有很多,以下为几个常见的锁实现

  • ReentrantLock:表示重入锁,它是唯一一个实现了 Lock 接口的类。重入锁指的是线程在获得锁之后,再次获取该锁不需要阻塞,而是直接关联一次计数器增加重入次数
  • ReentrantReadWriteLock:重入读写锁,它实现了 ReadWriteLock 接口,在这个类中维护了两个锁,一个是 ReadLock,一个是 WriteLock,他们都分别实现了 Lock 接口。读写锁是一种适合读多写少的场景下解决线程安全问题的工具,基本原则是: 读和读不互斥、读和写互斥、写和写互斥。也就是说涉及到影响数据变化的操作都会存在互斥。
  • StampedLock: stampedLock 是 JDK8 引入的新的锁机制,可以简单认为是读写锁的一个改进版本,读写锁虽然通过分离读和写的功能使得读和读之间可以完全并发,但是读和写是有冲突的,如果大量的读线程存在,可能会引起写线程的饥饿。stampedLock 是一种乐观的读策略,使得乐观锁完全不会阻塞写线程

Lock 的类关系图

Lock 有很多的锁的实现,但是直观的实现是 ReentrantLock 重入锁

常用API

void lock() // 如果锁可用就获得锁,如果锁不可用就阻塞直到锁释放
void lockInterruptibly() // 和lock()方法相似, 但阻塞的线程可中断,抛出java.lang.InterruptedException 异常
boolean tryLock() // 非阻塞获取锁;尝试获取锁,如果成功返回 true
boolean tryLock(long timeout, TimeUnit timeUnit) //带有超时时间的获取锁方法
void unlock() // 释放锁

ReentrantLock 重入锁

重入锁,表示支持重新进入的锁,也就是说,如果当前线程 t1 通过调用 lock 方法获取了锁之后,再次调用 lock,是不会再阻塞去获取锁的,直接增加重试次数就行了。synchronized 和 ReentrantLock 都是可重入锁。那为什么锁会存在重入的特性?假如在下面这类的场景中,存在多个加锁的方法的相互调用,其实就是一种重入特性的场景。

重入锁的设计目的

比如调用 demo 方法获得了当前的对象锁,然后在这个方法中再去调用demo2,demo2 中的存在同一个实例锁,这个时候当前线程会因为无法获得demo2 的对象锁而阻塞,就会产生死锁。重入锁的设计目的是避免线程的死锁。

public class ReentrantDemo {
    public synchronized void demo() {
        System.out.println("begin:demo");
        demo2();
    }
    public void demo2() {
        System.out.println("begin:demo1");
        synchronized (this) {
        }
    }
    public static void main(String[] args) {
        ReentrantDemo rd = new ReentrantDemo();
        new Thread(rd::demo).start();
    }
}

ReentrantLock 的使用案例

public class AtomicDemo {
    private static int count = 0;
    static Lock lock = new ReentrantLock();
    public static void inc() {
        lock.lock();
        try {
            Thread.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        count++;
        lock.unlock();
    }
    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 1000; i++) {
            new Thread(() -> {
                AtomicDemo.inc();
            }).start();
            ;
        }
        Thread.sleep(3000);
        System.out.println("result:" + count);
    }
}

ReentrantReadWriteLock

我们以前理解的锁,基本都是排他锁,也就是这些锁在同一时刻只允许一个线程进行访问,而读写所在同一时刻可以允许多个线程访问,但是在写线程访问时,所有的读线程和其他写线程都会被阻塞。读写锁维护了一对锁,一个读锁、一个写锁; 一般情况下,读写锁的性能都会比排它锁好,因为大多数场景读是多于写的。在读多于写的情况下,读写锁能够提供比排它锁更好的并发性和吞吐量。

public class LockDemo {
    static Map<String, Object> cacheMap = new HashMap<>();
    static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    static Lock read = rwl.readLock();
    static Lock write = rwl.writeLock();
    public static final Object get(String key) {
        System.out.println("开始读取数据");
        read.lock(); //读锁
        try {
            return cacheMap.get(key);
        } finally {
            read.unlock();
        }
    }
    public static final Object put(String key, Object value) {
        write.lock();
        System.out.println("开始写数据");
        try {
            return cacheMap.put(key, value);
        } finally {
            write.unlock();
        }
    }
}

在这个案例中,通过 hashmap 来模拟了一个内存缓存,然后使用读写所来保证这个内存缓存的线程安全性。当执行读操作的时候,需要获取读锁,在并发访问的时候,读锁不会被阻塞,因为读操作不会影响执行结果。

在执行写操作是,线程必须要获取写锁,当已经有线程持有写锁的情况下,当前线程会被阻塞,只有当写锁释放以后,其他读写操作才能继续执行。使用读写锁提升读操作的并发性,也保证每次写操作对所有的读写操作的可见性。

  • 读锁与读锁可以共享
  • 读锁与写锁不可以共享(排他)
  • 写锁与写锁不可以共享(排他)

ReentrantLock 的实现原理

我们知道锁的基本原理是,基于将多线程并行任务通过某一种机制实现线程的串行执行,从而达到线程安全性的目的。在 synchronized 中,我们分析了偏向锁、轻量级锁、乐观锁。基于乐观锁以及自旋锁来优化了 synchronized 的加锁开销,同时在重量级锁阶段,通过线程的阻塞以及唤醒来达到线程竞争和同步的目的。那么在 ReentrantLock 中,也一定会存在这样的需要去解决的问题。就是在多线程竞争重入锁时,竞争失败的线程是如何实现阻塞以及被唤醒的呢?

AQS 是什么

在 Lock 中,用到了一个同步队列 AQS,全称 AbstractQueuedSynchronizer,它是一个同步工具也是 Lock 用来实现线程同步的核心组件。如果你搞懂了 AQS,那么 J.U.C 中绝大部分的工具都能轻松掌握。

AQS 的两种功能

从使用层面来说,AQS 的功能分为两种:独占和共享 独占锁,每次只能有一个线程持有锁,比如前面给大家演示的 ReentrantLock 就是 以独占方式实现的互斥锁 共享锁,允许多个线程同时获取锁,并发访问共享资源,比如 ReentrantReadWriteLock

AQS 的内部实现

AQS 队列内部维护的是一个 FIFO 的双向链表,这种结构的特点是每个数据结构都有两个指针,分别指向直接的后继节点和直接前驱节点。所以双向链表可以从任意一个节点开始很方便的访问前驱和后继。每个 Node 其实是由线程封装,当线程争抢锁失败后会封装成 Node 加入到 ASQ 队列中去;当获取锁的线程释放锁以后,会从队列中唤醒一个阻塞的节点(线程)。

Node 的组成

释放锁以及添加线程对于队列的变化

当出现锁竞争以及释放锁的时候,AQS 同步队列中的节点会发生变化,首先看一下添加节点的场景。

这里会涉及到两个变化

  • 新的线程封装成 Node 节点追加到同步队列中,设置 prev 节点以及修改当前节点的前置节点的 next 节点指向自己
  • 通过 CAS 讲 tail 重新指向新的尾部节点

head 节点表示获取锁成功的节点,当头结点在释放同步状态时,会唤醒后继节点,如果后继节点获得锁成功,会把自己设置为头结点,节点的变化过程如下

这个过程也是涉及到两个变化

  • 修改 head 节点指向下一个获得锁的节点
  • 新的获得锁的节点,将 prev 的指针指向 null

设置 head 节点不需要用 CAS,原因是设置 head 节点是由获得锁的线程来完成的,而同步锁只能由一个线程获得,所以不需要 CAS 保证,只需要把 head 节点设置为原首节点的后继节点,并且断开原 head 节点的 next 引用即可

ReentrantLock 的源码分析

以 ReentrantLock 作为切入点,来看看在这个场景中是如何使用 AQS 来实现线程的同步的

ReentrantLock 的时序图

调用 ReentrantLock 中的 lock() 方法,源码的调用过程我使用了时序图来展现。

ReentrantLock.lock() 这个是 reentrantLock 获取锁的入口

public void lock() {
 sync.lock();
}

sync 实际上是一个抽象的静态内部类,它继承了 AQS 来实现重入锁的逻辑,我们前面说过 AQS 是一个同步队列,它能够实现线程的阻塞以及唤醒,但它并不具备业务功能,所以在不同的同步场景中,会继承 AQS 来实现对应场景的功能,Sync 有两个具体的实现类,分别是:

  • NofairSync:表示可以存在抢占锁的功能,也就是说不管当前队列上是否存在其他线程等待,新线程都有机会抢占锁
  • FailSync: 表示所有线程严格按照 FIFO 来获取锁

NofairSync.lock

以非公平锁为例,来看看 lock 中的实现

  • 非公平锁和公平锁最大的区别在于,在非公平锁中我抢占锁的逻辑是,不管有没有线程排队,我先上来 cas 去抢占一下
  • CAS 成功,就表示成功获得了锁
  • CAS 失败,调用 acquire(1) 走锁竞争逻辑
final void lock() {
 if (compareAndSetState(0, 1))
   setExclusiveOwnerThread(Thread.currentThread());
 else
  acquire(1);
}

CAS 的实现原理

protected final boolean compareAndSetState(int expect, int update) {
 // See below for intrinsics setup to support this
 return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

通过 cas 乐观锁的方式来做比较并替换,这段代码的意思是,如果当前内存中的 state 的值和预期值 expect 相等,则替换为 update。更新成功返回 true,否则返回 false。
这个操作是原子的,不会出现线程安全问题,这里面涉及到Unsafe这个类的操作,以及涉及到 state 这个属性的意义。 state 是 AQS 中的一个属性,它在不同的实现中所表达的含义不一样,对于重入锁的实现来说,表示一个同步状态。它有两个含义的表示

  • 当 state=0 时,表示无锁状态
  • 当 state>0 时,表示已经有线程获得了锁,也就是 state=1,但是因为ReentrantLock 允许重入,所以同一个线程多次获得同步锁的时候,state 会递增,比如重入 5 次,那么 state=5。而在释放锁的时候,同样需要释放 5 次直到 state=0其他线程才有资格获得锁

以上就是ReentrantLock重入锁底层原理示例解析的详细内容,更多关于ReentrantLock重入锁的资料请关注我们其它相关文章!

(0)

相关推荐

  • java ReentrantLock条件锁实现原理示例详解

    目录 引言 条件锁的使用 ReentrantLock.newCondition() Condition.await Condition.signal 引言 在前两篇文章中,我们了解了ReentrantLock内部公平锁和非公平锁的实现原理,可以知道其底层基于AQS,使用双向链表实现,同时在线程间通信方式(2)中我们了解到ReentrantLock也是支持条件锁的,接下来我们来看下,其内部条件锁的实现原理. 条件锁的使用 public static void main(String[] args)

  • 教你完全理解ReentrantLock重入锁

    1. ReentrantLock的介绍 ReentrantLock重入锁,是实现Lock接口的一个类,也是在实际编程中使用频率很高的一个锁,支持重入性,表示能够对共享资源能够重复加锁,即当前线程获取该锁再次获取不会被阻塞.在java关键字synchronized隐式支持重入性(关于synchronized可以看这篇文章),synchronized通过获取自增,释放自减的方式实现重入.与此同时,ReentrantLock还支持公平锁和非公平锁两种方式. 那么,要想完完全全的弄懂ReentrantL

  • java高并发的ReentrantLock重入锁

    目录 synchronized的局限性 ReentrantLock ReentrantLock基本使用 ReentrantLock是可重入锁 ReentrantLock实现公平锁 ReentrantLock获取锁的过程是可中断的 tryLock无参方法 tryLock有参方法 ReentrantLock其他常用的方法 获取锁的4种方法对比 总结 synchronized的局限性 synchronized是java内置的关键字,它提供了一种独占的加锁方式.synchronized的获取和释放锁由j

  • 详解java并发之重入锁-ReentrantLock

    前言 目前主流的锁有两种,一种是synchronized,另一种就是ReentrantLock,JDK优化到现在目前为止synchronized的性能已经和重入锁不分伯仲了,但是重入锁的功能和灵活性要比这个关键字多的多,所以重入锁是可以完全替代synchronized关键字的.下面就来介绍这个重入锁. 正文 ReentrantLock重入锁是Lock接口里最重要的实现,也是在实际开发中应用最多的一个,我这篇文章更接近实际开发的应用场景,为开发者提供直接上手应用.所以不是所有方法我都讲解,有些冷门

  • 简单了解Java中的可重入锁

    这篇文章主要介绍了简单了解Java中的可重入锁,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本文里面讲的是广义上的可重入锁,而不是单指JAVA下的ReentrantLock. 可重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响. 在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁. 下面是使用实例: package reentrantLock; pu

  • Java源码解析之可重入锁ReentrantLock

    本文基于jdk1.8进行分析. ReentrantLock是一个可重入锁,在ConcurrentHashMap中使用了ReentrantLock. 首先看一下源码中对ReentrantLock的介绍.如下图.ReentrantLock是一个可重入的排他锁,它和synchronized的方法和代码有着相同的行为和语义,但有更多的功能.ReentrantLock是被最后一个成功lock锁并且还没有unlock的线程拥有着.如果锁没有被别的线程拥有,那么一个线程调用lock方法,就会成功获取锁并返回.

  • Java可重入锁的实现原理与应用场景

    可重入锁,从字面来理解,就是可以重复进入的锁. 可重入锁,也叫做递归锁,指的是同一线程外层函数获得锁之后,内层递归函数仍然有获取该锁的代码,但不受影响. 在JAVA环境下ReentrantLock和synchronized都是可重入锁. synchronized是一个可重入锁.在一个类中,如果synchronized方法1调用了synchronized方法2,方法2是可以正常执行的,这说明synchronized是可重入锁.否则,在执行方法2想获取锁的时候,该锁已经在执行方法1时获取了,那么方法

  • Java并发编程之ReentrantLock可重入锁的实例代码

    目录 1.ReentrantLock可重入锁概述2.可重入3.可打断4.锁超时5.公平锁6.条件变量 Condition 1.ReentrantLock可重入锁概述 相对于 synchronized 它具备如下特点 可中断 synchronized锁加上去不能中断,a线程应用锁,b线程不能取消掉它 可以设置超时时间 synchronized它去获取锁时,如果对方持有锁,那么它就会进入entryList一直等待下去.而可重入锁可以设置超时时间,规定时间内如果获取不到锁,就放弃锁 可以设置为公平锁

  • Springboot基于Redisson实现Redis分布式可重入锁源码解析

    目录 一.前言 二.为什么使用Redisson 1.我们打开官网 2.我们可以看到官方让我们去使用其他 3.打开官方推荐 4.找到文档 三.Springboot整合Redisson 1.导入依赖 2.以官网为例查看如何配置 3.编写配置类 4.官网测试加锁例子 5.根据官网简单Controller接口编写 6.测试 四.lock.lock()源码分析 1.打开RedissonLock实现类 2.找到实现方法 3.按住Ctrl进去lock方法 4.进去尝试获取锁方法 5.查看tryLockInne

  • Golang实现可重入锁的示例代码

    目录 什么是可重入锁 具体实现 项目中遇到了可重入锁的需求和实现,具体记录下. 什么是可重入锁 我们平时说的分布式锁,一般指的是在不同服务器上的多个线程中,只有一个线程能抢到一个锁,从而执行一个任务.而我们使用锁就是保证一个任务只能由一个线程来完成.所以我们一般是使用这样的三段式逻辑: Lock();DoJob();Unlock(); 但是由于我们的系统都是分布式的,这个锁一般不会只放在某个进程中,我们会借用第三方存储,比如 Redis 来做这种分布式锁.但是一旦借助了第三方存储,我们就必须面对

  • 一篇文章让你彻底了解Java可重入锁和不可重入锁

    可重入锁 广义上的可重入锁指的是可重复可递归调用的锁,在外层使用锁之后,在内层仍然可以使用,并且不发生死锁(前提得是同一个对象或者class),这样的锁就叫做可重入锁. 我的理解就是,某个线程已经获得某个锁,可以无需等待而再次获取锁,并且不会出现死锁(不同线程当然不能多次获得锁,需要等待). 简单的说,就是某个线程获得某个锁,之后可以不用等待而再次获取锁且不会出现死锁. 常见的可重入锁 Synchronized和ReentrantLock 都是可重入锁. 可重入锁的释放 同一个线程获取同一个锁,

随机推荐