python 基于aiohttp的异步爬虫实战详解

目录
  • 引言
  • aiohttp是什么
  • requests和aiohttp区别
    • 安装aiohttp
  • aiohttp使用介绍
    • 基本实例
    • URL参数设置
    • 请求类型
    • 响应的几个方法
    • 超时设置
    • 并发限制
  • aiohttp异步爬取实战
  • 总结

引言

钢铁知识库,一个学习python爬虫、数据分析的知识库。人生苦短,快用python。

之前我们使用requests库爬取某个站点的时候,每发出一个请求,程序必须等待网站返回响应才能接着运行,而在整个爬虫过程中,整个爬虫程序是一直在等待的,实际上没有做任何事情。

像这种占用磁盘/内存IO、网络IO的任务,大部分时间是CPU在等待的操作,就叫IO密集型任务。对于这种情况有没有优化方案呢,当然有,那就是使用aiohttp库实现异步爬虫。

aiohttp是什么

我们在使用requests请求时,只能等一个请求先出去再回来,才会发送下一个请求。明显效率不高阿,这时候如果换成异步请求的方式,就不会有这个等待。一个请求发出去,不管这个请求什么时间响应,程序通过await挂起协程对象后直接进行下一个请求。

解决方法就是通过 aiohttp + asyncio,什么是aiohttp?一个基于 asyncio 的异步 HTTP 网络模块,可用于实现异步爬虫,速度明显快于 requests 的同步爬虫。

requests和aiohttp区别

区别就是一个同步一个是异步。话不多说直接上代码看效果。

安装aiohttp

pip install aiohttp
  • requests同步示例:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# author: 钢铁知识库
import time
import requests
# 同步请求
def main():
    start = time.time()
    for i in range(5):
        res = requests.get('http://httpbin.org/delay/2')
        print(f'当前时间:{datetime.datetime.now()}, status_code = {res.status_code}')
    print(f'requests同步耗时:{time.time() - start}')
if __name__ == '__main__':
    main()
'''
当前时间:2022-09-05 15:44:51.991685, status_code = 200
当前时间:2022-09-05 15:44:54.528918, status_code = 200
当前时间:2022-09-05 15:44:57.057373, status_code = 200
当前时间:2022-09-05 15:44:59.643119, status_code = 200
当前时间:2022-09-05 15:45:02.167362, status_code = 200
requests同步耗时:12.785893440246582
'''

可以看到5次请求总共用12.7秒,再来看同样的请求异步多少时间。

  • aiohttp异步示例:
#!/usr/bin/env python
# file: day6-9同步和异步.py
# author: 钢铁知识库
import asyncio
import time
import aiohttp
async def async_http():
    # 声明一个支持异步的上下文管理器
    async with aiohttp.ClientSession() as session:
        res = await session.get('http://httpbin.org/delay/2')
        print(f'当前时间:{datetime.datetime.now()}, status_code = {res.status}')
tasks = [async_http() for _ in range(5)]
start = time.time()
# Python 3.7 及以后,不需要显式声明事件循环,可以使用 asyncio.run()来代替最后的启动操作
asyncio.run(asyncio.wait(tasks))
print(f'aiohttp异步耗时:{time.time() - start}')
'''
当前时间:2022-09-05 15:42:32.363966, status_code = 200
当前时间:2022-09-05 15:42:32.366957, status_code = 200
当前时间:2022-09-05 15:42:32.374973, status_code = 200
当前时间:2022-09-05 15:42:32.384909, status_code = 200
当前时间:2022-09-05 15:42:32.390318, status_code = 200
aiohttp异步耗时:2.5826876163482666
'''

两次对比可以看到执行过程,时间一个是顺序执行,一个是同时执行。这就是同步和异步的区别。

aiohttp使用介绍

接下来我们会详细介绍aiohttp库的用法和爬取实战。aiohttp 是一个支持异步请求的库,它和 asyncio 配合使用,可以使我们非常方便地实现异步请求操作。asyncio模块,其内部实现了对TCP、UDP、SSL协议的异步操作,但是对于HTTP请求,就需要aiohttp实现了。

aiohttp分为两部分,一部分是Client,一部分是Server。下面来说说aiohttp客户端部分的用法。

基本实例

先写一个简单的案例

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : 钢铁知识库
import asyncio
import aiohttp
async def get_api(session, url):
    # 声明一个支持异步的上下文管理器
    async with session.get(url) as response:
        return await response.text(), response.status
async def main():
    async with aiohttp.ClientSession() as session:
        html, status = await get_api(session, 'http://httpbin.org/delay/2')
        print(f'html: {html[:50]}')
        print(f'status : {status}')
if __name__ == '__main__':
    #  Python 3.7 及以后,不需要显式声明事件循环,可以使用 asyncio.run(main())来代替最后的启动操作
    asyncio.get_event_loop().run_until_complete(main())
'''
html: {
  "args": {},
  "data": "",
  "files": {},
status : 200
Process finished with exit code 0
'''

aiohttp请求的方法和之前有明显区别,主要包括如下几点:

  • 除了导入aiohttp库,还必须引入asyncio库,因为要实现异步,需要启动协程。
  • 异步的方法定义不同,前面都要统一加async来修饰。
  • with as用于声明上下文管理器,帮我们自动分配和释放资源,加上async代码支持异步。
  • 对于返回协程对象的操作,前面需要加await来修饰。response.text()返回的是协程对象。
  • 最后运行启用循环事件

注意:Python3.7及以后的版本中,可以使用asyncio.run(main())代替最后的启动操作。

URL参数设置

对于URL参数的设置,我们可以借助params设置,传入一个字典即可,实例如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : 钢铁知识库
import aiohttp
import asyncio
async def main():
    params = {'name': '钢铁知识库', 'age': 23}
    async with aiohttp.ClientSession() as session:
        async with session.get('https://www.httpbin.org/get', params=params) as res:
            print(await res.json())
if __name__ == '__main__':
    asyncio.get_event_loop().run_until_complete(main())
'''
{'args': {'age': '23', 'name': '钢铁知识库'}, 'headers': {'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate', 'Host': 'www.httpbin.org', 'User-Agent': 'Python/3.8 aiohttp/3.8.1', 'X-Amzn-Trace-Id': 'Root=1-63162e34-1acf7bde7a6d801368494c72'}, 'origin': '122.55.11.188', 'url': 'https://www.httpbin.org/get?name=钢铁知识库&age=23'}
'''

可以看到实际请求的URL后面带了后缀,这就是params的内容。

请求类型

除了get请求,aiohttp还支持其它请求类型,如POST、PUT、DELETE等,和requests使用方式类似。

session.post('http://httpbin.org/post', data=b'data')
session.put('http://httpbin.org/put', data=b'data')
session.delete('http://httpbin.org/delete')
session.head('http://httpbin.org/get')
session.options('http://httpbin.org/get')
session.patch('http://httpbin.org/patch', data=b'data')

要使用这些方法,只需要把对应的方法和参数替换一下。用法和get类似就不再举例。

响应的几个方法

对于响应来说,我们可以用如下方法分别获取其中的响应情况。状态码、响应头、响应体、响应体二进制内容、响应体JSON结果,实例如下:

#!/usr/bin/env python
# @Author  : 钢铁知识库
import aiohttp
import asyncio
async def main():
    data = {'name': '钢铁知识库', 'age': 23}
    async with aiohttp.ClientSession() as session:
        async with session.post('https://www.httpbin.org/post', data=data) as response:
            print('status:', response.status)  # 状态码
            print('headers:', response.headers)  # 响应头
            print('body:', await response.text())  # 响应体
            print('bytes:', await response.read())  # 响应体二进制内容
            print('json:', await response.json())  # 响应体json数据
if __name__ == '__main__':
    asyncio.get_event_loop().run_until_complete(main())
'''
status: 200
headers: <CIMultiDictProxy('Date': 'Tue, 06 Sep 2022 00:18:36 GMT', 'Content-Type': 'application/json', 'Content-Length': '534', 'Connection': 'keep-alive', 'Server': 'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': 'true')>
body: {
  "args": {},
  "data": "",
  "files": {},
  "form": {
    "age": "23",
    "name": "\u94a2\u94c1\u77e5\u8bc6\u5e93"
  },
  "headers": {
    "Accept": "*/*",
    "Accept-Encoding": "gzip, deflate",
    "Content-Length": "57",
    "Content-Type": "application/x-www-form-urlencoded",
    "Host": "www.httpbin.org",
    "User-Agent": "Python/3.8 aiohttp/3.8.1",
    "X-Amzn-Trace-Id": "Root=1-631691dc-6aa1b2b85045a1a0481d06e1"
  },
  "json": null,
  "origin": "122.55.11.188",
  "url": "https://www.httpbin.org/post"
}
bytes: b'{\n  "args": {}, \n  "data": "", \n  "files": {}, \n  "form": {\n    "age": "23", \n    "name": "\\u94a2\\u94c1\\u77e5\\u8bc6\\u5e93"\n  }, \n  "headers": {\n    "Accept": "*/*", \n    "Accept-Encoding": "gzip, deflate", \n    "Content-Length": "57", \n    "Content-Type": "application/x-www-form-urlencoded", \n    "Host": "www.httpbin.org", \n    "User-Agent": "Python/3.8 aiohttp/3.8.1", \n    "X-Amzn-Trace-Id": "Root=1-631691dc-6aa1b2b85045a1a0481d06e1"\n  }, \n  "json": null, \n  "origin": "122.5.132.196", \n  "url": "https://www.httpbin.org/post"\n}\n'
json: {'args': {}, 'data': '', 'files': {}, 'form': {'age': '23', 'name': '钢铁知识库'}, 'headers': {'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate', 'Content-Length': '57', 'Content-Type': 'application/x-www-form-urlencoded', 'Host': 'www.httpbin.org', 'User-Agent': 'Python/3.8 aiohttp/3.8.1', 'X-Amzn-Trace-Id': 'Root=1-631691dc-6aa1b2b85045a1a0481d06e1'}, 'json': None, 'origin': '122.55.11.188', 'url': 'https://www.httpbin.org/post'}
'''

可以看到有些字段前面需要加await,因为其返回的是一个协程对象(如async修饰的方法),那么前面就要加await。

超时设置

我们可以借助ClientTimeout对象设置超时,例如要设置1秒的超时时间,可以这么实现:

#!/usr/bin/env python
# @Author  : 钢铁知识库
import aiohttp
import asyncio
async def main():
    # 设置 1 秒的超时
    timeout = aiohttp.ClientTimeout(total=1)
    data = {'name': '钢铁知识库', 'age': 23}
    async with aiohttp.ClientSession(timeout=timeout) as session:
        async with session.get('https://www.httpbin.org/delay/2', data=data) as response:
            print('status:', response.status)  # 状态码
if __name__ == '__main__':
    asyncio.get_event_loop().run_until_complete(main())
'''
Traceback (most recent call last):
####中间省略####
    raise asyncio.TimeoutError from None
asyncio.exceptions.TimeoutError
'''

这里设置了超时1秒请求延时2秒,发现抛出异常asyncio.TimeoutError,如果正常则响应200。

并发限制

aiohttp可以支持非常高的并发量,但面对高并发网站可能会承受不住,随时有挂掉的危险,这时需要对并发进行一些控制。现在我们借助asyncio 的Semaphore来控制并发量,实例如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : 钢铁知识库
import asyncio
from datetime import datetime
import aiohttp
# 声明最大并发量
semaphore = asyncio.Semaphore(2)
async def get_api():
    async with semaphore:
        print(f'scrapting...{datetime.now()}')
        async with session.get('https://www.baidu.com') as response:
            await asyncio.sleep(2)
            # print(f'当前时间:{datetime.now()}, {response.status}')
async def main():
    global session
    session = aiohttp.ClientSession()
    tasks = [asyncio.ensure_future(get_api()) for _ in range(1000)]
    await asyncio.gather(*tasks)
    await session.close()
if __name__ == '__main__':
    asyncio.get_event_loop().run_until_complete(main())
'''
scrapting...2022-09-07 08:11:14.190000
scrapting...2022-09-07 08:11:14.292000
scrapting...2022-09-07 08:11:16.482000
scrapting...2022-09-07 08:11:16.504000
scrapting...2022-09-07 08:11:18.520000
scrapting...2022-09-07 08:11:18.521000
'''

在main方法里,我们声明了1000个task,如果没有通过Semaphore进行并发限制,那这1000放到gather方法后会被同时执行,并发量相当大。有了信号量的控制之后,同时运行的task数量就会被控制,这样就能给aiohttp限制速度了。

aiohttp异步爬取实战

接下来我们通过异步方式练手一个小说爬虫,需求如下:

需求页面:https://dushu.baidu.com/pc/detail?gid=4308080950

目录接口:https://dushu.baidu.com/api/pc/getCatalog?data={"book_id":"4308080950"}

详情接口:

https://dushu.baidu.com/api/pc/getChapterContent?data={"book_id":"4295122774","cid":"4295122774|116332"}

关键参数:book_id:小说ID、cid:章节id

采集要求:使用协程方式写入,数据存放进mongo

需求分析:点开需求页面,通过F12抓包可以发现两个接口。一个目录接口,一个详情接口。
首先第一步先请求目录接口拿到cid章节id,然后将cid传递给详情接口拿到小说数据,最后存入mongo即可。

话不多说,直接上代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : 钢铁知识库
# 不合适就是不合适,真正合适的,你不会有半点犹豫。
import asyncio
import json,re
import logging
import aiohttp
import requests
from utils.conn_db import ConnDb
# 日志格式
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
# 章节目录api
b_id = '4308080950'
url = 'https://dushu.baidu.com/api/pc/getCatalog?data={"book_id":"'+b_id+'"}'
headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
                  "Chrome/104.0.0.0 Safari/537.36"
}
# 并发声明
semaphore = asyncio.Semaphore(5)
async def download(title,b_id, cid):
    data = {
        "book_id": b_id,
        "cid": f'{b_id}|{cid}',
    }
    data = json.dumps(data)
    detail_url = 'https://dushu.baidu.com/api/pc/getChapterContent?data={}'.format(data)
    async with semaphore:
        async with aiohttp.ClientSession(headers=headers) as session:
            async with session.get(detail_url) as response:
                res = await response.json()
                content = {
                    'title': title,
                    'content': res['data']['novel']['content']
                }
                # print(title)
                await save_data(content)
async def save_data(data):
    if data:
        client = ConnDb().conn_motor_mongo()
        db = client.baidu_novel
        collection = db.novel
        logging.info('saving data %s', data)
        await collection.update_one(
            {'title': data.get('title')},
            {'$set': data},
            upsert=True
        )
async def main():
    res = requests.get(url, headers=headers)
    tasks = []
    for re in res.json()['data']['novel']['items']:     # 拿到某小说目录cid
        title = re['title']
        cid = re['cid']
        tasks.append(download(title, b_id, cid))    # 将请求放到列表里,再通过gather执行并发
    await asyncio.gather(*tasks)
if __name__ == '__main__':
    asyncio.run(main())

至此,我们就使用aiohttp完成了对小说章节的爬取。

要实现异步处理,得先要有挂起操作,当一个任务需要等待 IO 结果的时候,可以挂起当前任务,转而去执行其他任务,这样才能充分利用好资源,要实现异步,需要了解 await 的用法,使用 await 可以将耗时等待的操作挂起,让出控制权。当协程执行的时候遇到 await,时间循环就会将本协程挂起,转而去执行别的协程,直到其他的协程挂起或执行完毕。

await 后面的对象必须是如下格式之一:

  • A native coroutine object returned from a native coroutine function,一个原生 coroutine 对象。
  • A generator-based coroutine object returned from a function decorated with types.coroutine,一个由 types.coroutine 修饰的生成器,这个生成器可以返回 coroutine 对象。
  • An object with an await method returning an iterator,一个包含 await 方法的对象返回的一个迭代器。

总结

以上就是借助协程async和异步aiohttp两个主要模块完成异步爬虫的内容,
aiohttp 以异步方式爬取网站的耗时远小于 requests 同步方式,以上列举的例子希望对你有帮助。

注意,线程和协程是两个概念,后面找机会我们再聊聊进程和线程、线程和协程的关系

更多关于python aiohttp异步爬虫的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python中使用aiohttp模拟服务器出现错误

    软件版本及环境:Python 3.9 + pycharm 2020.2.1 + Windows10 运行报错: DeprecationWarning: loop argument is deprecated app = web.Application(loop=loop)DeprecationWarning: Application.make_handler(-) is deprecated, use AppRunner API instead srv = await loop.create_s

  • Python requests及aiohttp速度对比代码实例

    环境:centos7 python3.6 测试网址:www.bai.com 测试方式:抓取百度100次 结果: aio: 10.702147483825684s requests: 12.404678583145142s 异步框架的速度还是有显著提升的. 下面贡献代码: import aiohttp import time import requests import asyncio def test_requests(): """ 测试requessts请求百度100次时间

  • python aiohttp的使用详解

    1.aiohttp的简单使用(配合asyncio模块) import asyncio,aiohttp async def fetch_async(url): print(url) async with aiohttp.request("GET",url) as r: reponse = await r.text(encoding="utf-8") #或者直接await r.read()不编码,直接读取,适合于图像等无法编码文件 print(reponse) task

  • Python aiohttp百万并发极限测试实例分析

    本文实例讲述了Python aiohttp百万并发极限测试.分享给大家供大家参考,具体如下: 本文将测试python aiohttp的极限,同时测试其性能表现,以分钟发起请求数作为指标.大家都知道,当应用到网络操作时,异步的代码表现更优秀,但是验证这个事情,同时搞明白异步到底有多大的优势以及为什么会有这样的优势仍然是一件有趣的事情.为了验证,我将发起1000000请求,用aiohttp客户端.aiohttp每分钟能够发起多少请求?你能预料到哪些异常情况以及崩溃会发生,当你用比较粗糙的脚本去发起如

  • python 基于AioHttp 异步抓取火星图片

    翻译:大江狗 原文链接:https://pfertyk.me/2017/06/getting-mars-photos-from-nasa-using-aiohttp/ 小编注:aiohttp是基于asyncio实现的异步http框架. 本文案例也可以使用异步django实现. 我是Andy Weir写的<火星人>一书的忠实粉丝.阅读时,我想知道马克·沃特尼(Mark Watney)绕着红色星球走的感觉如何.最近,多亏了 Twilio的这篇博文, 我发现NASA提供了一个公共API,可以提供火星

  • Python中利用aiohttp制作异步爬虫及简单应用

    摘要: 简介 asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块.关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架--aiohttp,它可以帮助我们异步地实现HTTP请求,从而使得我们的程序效率大大提高. 简介 asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块.关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架--ai

  • python 基于aiohttp的异步爬虫实战详解

    目录 引言 aiohttp是什么 requests和aiohttp区别 安装aiohttp aiohttp使用介绍 基本实例 URL参数设置 请求类型 响应的几个方法 超时设置 并发限制 aiohttp异步爬取实战 总结 引言 钢铁知识库,一个学习python爬虫.数据分析的知识库.人生苦短,快用python. 之前我们使用requests库爬取某个站点的时候,每发出一个请求,程序必须等待网站返回响应才能接着运行,而在整个爬虫过程中,整个爬虫程序是一直在等待的,实际上没有做任何事情. 像这种占用

  • 基于javascript的异步编程实例详解

    本文实例讲述了基于javascript的异步编程.分享给大家供大家参考,具体如下: 异步函数这个术语有点名不副实,调用一个函数后,程序只在该函数返回后才能继续.JavaScript程序员如果称一个函数为异步的,其意思就是这个函数会导致将来再运行另一个函数,后者取自于事件队列.如果后面这个函数是作为参数传递给前者的,则称其为回调函数. callback 回调函数是异步编程最基本的方式. 采用这种方式,我们把同步操作变成了异步操作,主函数不会堵塞程序运行,相当于先执行程序的主要逻辑,将耗时的操作推迟

  • Python基于SMTP协议实现发送邮件功能详解

    本文实例讲述了Python基于SMTP协议实现发送邮件功能.分享给大家供大家参考,具体如下: SMTP(Simple Mail Transfer Protocol),即简单邮件传输协议,它是一组由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式.Python内置对SMTP的支持,可以发送纯文本邮件.HTML邮件以及带附件的邮件. Python对SMTP支持有smtplib和email两个模块,email负责构造邮件,smtplib负责发送邮件. Python创建SMTP语法如下: imp

  • Python基于Tensor FLow的图像处理操作详解

    本文实例讲述了Python基于Tensor FLow的图像处理操作.分享给大家供大家参考,具体如下: 在对图像进行深度学习时,有时可能图片的数量不足,或者希望网络进行更多的学习,这时可以对现有的图片数据进行处理使其变成一张新的图片,在此基础上进行学习,从而提高网络识别的准确率. 1.图像解码显示 利用matplot库可以方便简洁地在jupyter内对图片进行绘制与输出,首先通过tf.gfile打开图片文件,并利用函数tf.image.decode_jpeg将jpeg图片解码为三位矩阵,之后便可以

  • 利用PyCharm Profile分析异步爬虫效率详解

    今天比较忙,水一下 下面的代码来源于这个视频里面提到的,github 的链接为:github.com/mikeckenned-(本地下载) 第一个代码如下,就是一个普通的 for 循环爬虫.原文地址. import requests import bs4 from colorama import Fore def main(): get_title_range() print("Done.") def get_html(episode_number: int) -> str: p

  • Python基于pip实现离线打包过程详解

    新公司是内网环境,无法使用pip安装第三方资源库,在网上搜下,可以直接使用pip打包本机所安装的第三方资源库,打包成whl文件 一 进入cmd命令行 1 打包单个模块 pip download pytest -d /tmp 2 打包本机所有的包 pip freeze >requirements.txt pip download -r requirements.txt -d /tmp 或者 pip install --download /tmp/packages -r requirements.t

  • Python基于数列实现购物车程序过程详解

    要求 1.启动程序后让用户输入余额,并打印商品列表 2.用户通过输入编号购买商品 3.用户选择商品购买后,根据余额判断成功或者失败,给出对应提示 4.可以随时退出,退出后打印账号余额以及购买的商品列表 构思 1.首先,用户余额需要进行存储,用户购买的物品需要进行存储在数组中 2.用户购买成功后,将购买的物品放入物品集合,并用总金额减去余额 3.如果失败,给出失败提示,并打印余额 4.用户选择继续后,无论成功失败,都可以继续购买 代码 # 用户输入工资 balance = int(input("P

  • 基于python爬虫数据处理(详解)

    一.首先理解下面几个函数 设置变量 length()函数 char_length() replace() 函数 max() 函数 1.1.设置变量 set @变量名=值 set @address='中国-山东省-聊城市-莘县'; select @address 1.2 .length()函数 char_length()函数区别 select length('a') ,char_length('a') ,length('中') ,char_length('中') 1.3. replace() 函数

  • 基于python中staticmethod和classmethod的区别(详解)

    例子 class A(object): def foo(self,x): print "executing foo(%s,%s)"%(self,x) @classmethod def class_foo(cls,x): print "executing class_foo(%s,%s)"%(cls,x) @staticmethod def static_foo(x): print "executing static_foo(%s)"%x a=A(

随机推荐