Python利用Rows快速操作csv文件

目录
  • 1.准备
  • 2.基本使用
  • 3.命令行工具

Rows 是一个专门用于操作表格的第三方Python模块。

只要通过 Rows 读取 csv 文件,她就能生成可以被计算的 Python 对象。

相比于 pandas 的 pd.read_csv, 我认为 Rows 的优势在于其易于理解的计算语法和各种方便的导出和转换语法。它能非常方便地提取pdf中的文字、将csv转换为sqlite文件、合并csv等,还能对csv文件执行sql语法,还是比较强大的。

当然,它的影响力肯定没有 Pandas 大,不过了解一下吧,技多不压身。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点

请选择以下任一种方式输入命令安装依赖:

1. Windows 环境 打开 Cmd (开始-运行-CMD)。

2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。

3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install rows

2.基本使用

通过下面这个小示例,你就能知道Rows的基本使用方法。

假设我们有这样的一个csv表格数据:

state,city,inhabitants,area
AC,Acrelândia,12538,1807.92
AC,Assis Brasil,6072,4974.18
AC,Brasiléia,21398,3916.5
AC,Bujari,8471,3034.87
AC,Capixaba,8798,1702.58
[...]
RJ,Angra dos Reis,169511,825.09
RJ,Aperibé,10213,94.64
RJ,Araruama,112008,638.02
RJ,Areal,11423,110.92
RJ,Armação dos Búzios,27560,70.28
[...]

如果我们想要找出 state 为 RJ 并且人口大于 500000 的城市,只需要这么做:

import rows

cities = rows.import_from_csv("data/brazilian-cities.csv")
rio_biggest_cities = [
    city for city in cities
    if city.state == "RJ" and city.inhabitants > 500000
]
for city in rio_biggest_cities:
    density = city.inhabitants / city.area
    print(f"{city.city} ({density:5.2f} ppl/km²)")

和 Pandas 很像,但是语法比 Pandas 简单,整个模块也比 Pandas 轻量。

如果你想要自己新建一个"表格", 你可以这么写:

from collections import OrderedDict
from rows import fields, Table

country_fields = OrderedDict([
    ("name", fields.TextField),
    ("population", fields.IntegerField),
])

countries = Table(fields=country_fields)
countries.append({"name": "Argentina", "population": "45101781"})
countries.append({"name": "Brazil", "population": "212392717"})
countries.append({"name": "Colombia", "population": "49849818"})
countries.append({"name": "Ecuador", "population": "17100444"})
countries.append({"name": "Peru", "population": "32933835"})

然后你可以迭代它:

for country in countries:
    print(country)
# Result:
# Row(name='Argentina', population=45101781)
# Row(name='Brazil', population=212392717)
# Row(name='Colombia', population=49849818)
# Row(name='Ecuador', population=17100444)
# Row(name='Peru', population=32933835)
# "Row" is a namedtuple created from `country_fields`

# We've added population as a string, the library automatically converted to
# integer so we can also sum:
countries_population = sum(country.population for country in countries)
print(countries_population) # prints 357378595

还可以将此表导出为 CSV 或任何其他支持的格式:

# 公众号:Python实用宝典
import rows
rows.export_to_csv(countries, "some-LA-countries.csv")

# html
rows.export_to_html(legislators, "some-LA-countries.csv")

从字典导入到rows对象:

import rows

data = [
    {"name": "Argentina", "population": "45101781"},
    {"name": "Brazil", "population": "212392717"},
    {"name": "Colombia", "population": "49849818"},
    {"name": "Ecuador", "population": "17100444"},
    {"name": "Peru", "population": "32933835"},
    {"name": "Guyana", }, # Missing "population", will fill with `None`
]
table = rows.import_from_dicts(data)
print(table[-1]) # Can use indexes
# Result:
# Row(name='Guyana', population=None)

3.命令行工具

除了写Python代码外,你还可以直接使用Rows的命令行工具,下面介绍几个可能会经常被用到的工具。

读取pdf文件内的文字并保存为文件:

# 需要提前安装: pip install rows[pdf]
URL="http://www.imprensaoficial.rr.gov.br/app/_edicoes/2018/01/doe-20180131.pdf"
rows pdf-to-text $URL result.txt # 保存到文件 显示进度条
rows pdf-to-text --quiet $URL result.txt # 保存到文件 不显示进度条
rows pdf-to-text --pages=1,2,3 $URL # 输出三页到终端
rows pdf-to-text --pages=1-3 $URL # 输出三页到终端(使用 - 范围符)

将csv转化为sqlite:

rows csv2sqlite \
     --dialect=excel \
     --input-encoding=latin1 \
     file1.csv file2.csv \
     result.sqlite

合并多个csv文件:

rows csv-merge \
     file1.csv file2.csv.bz2 file3.csv.xz \
     result.csv.gz

对csv执行sql搜索:

# needs: pip install rows[html]
rows query \
    "SELECT * FROM table1 WHERE inhabitants > 1000000" \
    data/brazilian-cities.csv \
    --output=data/result.html

其他更多功能,请见Rows官方文档:

http://turicas.info/rows

到此这篇关于Python利用Rows快速操作csv文件的文章就介绍到这了,更多相关Python操作csv内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python中csv文件创建、读取及修改等操作实例

    1. python中创建新的csv文件 (1). 使用csv.writer()创建: 代码如下: import csv headers = ['学号','姓名','分数'] rows = [('202001','张三','98'), ('202002','李四','95'), ('202003','王五','92')] with open('score.csv','w',encoding='utf8',newline='') as f : writer = csv.writer(f) write

  • python使用writerows写csv文件产生多余空行的处理方法

    初次接触python,学艺不精,第一次实战写一个文本处理的小程序时便遇到了头疼的问题. 先看代码: 生成的.CSV文件每两行之间都会多出一行空格(如下图),具体原因可参看点击打开链接 with open('E:\\test.csv','wt')as fout: cout=csv.DictWriter(fout,list_attrs_head )#list_attrs_head头属性列表 cout.writeheader() cout.writerows(list_words) 上面链接中的这位大

  • python csv一些基本操作总结

    一.读取数据 csv.reader csv.reader传入的可以是列表或者文件对象,返回的是一个可迭代的对象,需要使用for循环遍历 path = "C:\\Users\\A539\\Desktop\\1.csv" with open(path, 'r') as fp: lines = csv.reader(fp) for line in lines: print(line) print(type(line)) line的格式为list 二.写入数据 csv.writer 将一个列表

  • 详解Python读取和写入操作CSV文件的方法

    目录 什么是 CSV 文件? 内置 CSV 库解析 CSV 文件 读取 CSV 文件csv 将 CSV 文件读入字典csv 可选的 Python CSV reader参数 使用 csv 写入文件 从字典中写入 CSV 文件csv 使用 pandas 库解析 CSV 文件 pandas 读取 CSV 文件 pandas 写入 CSV 文件 最流行的数据交换格式之一是 CSV 格式.是需要通过键盘和控制台以外的方式将信息输入和输出的程序,通过文本文件交换信息是在程序之间共享信息的常用方法. 这里带和

  • Python中CSV文件(逗号分割)实战操作指南

    目录 一.csv文件介绍 1.csv文件简介 2.为什么要使用csv文件 二.csv文件查看 1.测试文件创建 2.查看csv文件(列表) 3.查看csv文件(字典) 4.写入文件(列表) 5.写入文件(字典) 总结 一.csv文件介绍 1.csv文件简介 逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本).纯文本意味着该文件是一个字符序列,不含必须像二进制数字那样被解读的数据.CSV

  • Python操作CSV格式文件的方法大全

    目录 (一)CSV格式文件 (二)CSV库操作csv格式文本 (三)pandas库操作CSV文件 总结 (一)CSV格式文件 1.说明 CSV是一种以逗号分隔数值的文件类型,在数据库或电子表格中,常见的导入导出文件格式就是CSV格式,CSV格式存储数据通常以纯文本的方式存数数据表. (二)CSV库操作csv格式文本 操作一下表格数据: 1.读取表头的2中方式 #方式一 import csv with open("D:\\test.csv") as f: reader = csv.rea

  • Python利用Rows快速操作csv文件

    目录 1.准备 2.基本使用 3.命令行工具 Rows 是一个专门用于操作表格的第三方Python模块. 只要通过 Rows 读取 csv 文件,她就能生成可以被计算的 Python 对象. 相比于 pandas 的 pd.read_csv, 我认为 Rows 的优势在于其易于理解的计算语法和各种方便的导出和转换语法.它能非常方便地提取pdf中的文字.将csv转换为sqlite文件.合并csv等,还能对csv文件执行sql语法,还是比较强大的. 当然,它的影响力肯定没有 Pandas 大,不过了

  • Python 利用pydub库操作音频文件的方法

    最近使用Python调用百度的REST API实现语音识别,但是百度要求音频文件的压缩方式只能是pcm(不压缩).wav.opus.speex.amr,这里面也就wav还常见一点,但是一般设备录音得到的文件都是mp3,这就要把mp3转换为wav,由于python的效率并不高,很多实现都是使用C++或者Java,不过GitHub上有一个项目pydub(https://github.com/jiaaro/pydub/tree/master/pydub)可以暂时解决问题. 安装pydub 直接执行以下

  • python 利用PyAutoGUI快速构建自动化操作脚本

    一.背景 大家好,我是安果! 我们经常遇到需要进行大量重复操作的时候,比如:网页上填表,对 web 版本 OA 进行操作,自动化测试或者给新系统首次添加数据等 这些操作的特点往往是:数据同构,大多是已经有了的结构化数据:操作比较呆板,都是同一个流程的点击.输入:数据量大,极大消耗操作人精力 那么能不能自动化呢? 二.自动化的方案 如果你在 web 上进行操作, Python 的 Selenium 可以满足要求.如果需要对 GUI 界面进行操作,你恐怕得试验下"按键精灵"能不能满足要求.

  • Python实现的简单读写csv文件操作示例

    本文实例讲述了Python实现的简单读写csv文件操作.分享给大家供大家参考,具体如下: python中有一个读写csv文件的包,直接import csv即可 新建test.csv 1.写 import csv with open("test.csv","w",encoding='utf8') as csvfile: writer=csv.writer(csvfile) writer.writerow(["index","a_name&

  • Python操作csv文件之csv.writer()和csv.DictWriter()方法的基本使用

    目录 一.csv.writer()方法的基本使用 二.csv.DictWriter()方法的基本使用 总结 一.csv.writer()方法的基本使用 示例代码1: import csv data = [ (1,"cat",18), (2,"dog",17), (3,"tigger",16), ] f = open('test.csv','a',encoding='utf8',newline='') writer = csv.writer(f)

  • 使用python的pandas库读取csv文件保存至mysql数据库

    第一:pandas.read_csv读取本地csv文件为数据框形式 data=pd.read_csv('G:\data_operation\python_book\chapter5\\sales.csv') 第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型 data.iloc[:,1]=pd.to_datetime(data.iloc[:,1]) 注意:=号,这样在原始的数据框中,改变了列的类型 第三:查看列类型 print(data.dtypes) 第四:方法一

  • Python利用fastapi实现上传文件

    目录 使用File实现文件上传 使用UploadFile实现文件上传 UploadFile的属性 设置上传文件是可选的 上传多个文件 知识点补充 使用File实现文件上传 使用Form表单上传文件,fastapi使用File获取上传的文件. 指定了参数类型是bytes:file: bytes = File(),此时会将文件内容全部读取到内存,比较适合小文件. 使用File需要提前安装 python-multipart from fastapi import FastAPI, File ​ app

  • Python实现求两个csv文件交集的方法

    本文实例讲述了Python实现求两个csv文件交集的方法.分享给大家供大家参考,具体如下: #!/usr/bin/env python rd3 = open('data_17_17_2.csv') base = open('data_17_17_3.csv') wr3 = open('delNoBuyed3DayAndStoreAndInCar4.5.2.csv','w+') bsData = base.readlines() i = 1 for key in rd3: if key in bs

  • C#操作CSV文件类实例

    本文实例讲述了C#操作CSV文件类.分享给大家供大家参考.具体分析如下: 这个C#类用于转换DataTable为CSV文件.CSV文件转换成DataTable,如果需要进行CSV和DataTable之间进行转换,使用这个类非常合适. using System.Data; using System.IO; namespace DotNet.Utilities { /// <summary> /// CSV文件转换类 /// </summary> public static class

随机推荐