BatchNorm2d原理、作用及pytorch中BatchNorm2d函数的参数使用

目录
  • BN原理、作用
  • 函数参数讲解
  • 总结

BN原理、作用

函数参数讲解

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  • 1.num_features:一般输入参数的shape为batch_size*num_features*height*width,即为其中特征的数量,即为输入BN层的通道数;
  • 2.eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5,避免分母为0;
  • 3.momentum:一个用于运行过程中均值和方差的一个估计参数(我的理解是一个稳定系数,类似于SGD中的momentum的系数);
  • 4.affine:当设为true时,会给定可以学习的系数矩阵gamma和beta

一般来说pytorch中的模型都是继承nn.Module类的,都有一个属性trainning指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层或者Dropout层。

通常用model.train()指定当前模型model为训练状态,model.eval()指定当前模型为测试状态。

同时,BN的API中有几个参数需要比较关心的,一个是affine指定是否需要仿射,还有个是track_running_stats指定是否跟踪当前batch的统计特性。

容易出现问题也正好是这三个参数:trainning,affine,track_running_stats。

其中的affine指定是否需要仿射,也就是是否需要上面算式的第四个,如果affine=False则γ=1,β=0,并且不能学习被更新。一般都会设置成affine=True。

trainning和track_running_stats,track_running_stats=True表示跟踪整个训练过程中的batch的统计特性,得到方差和均值,而不只是仅仅依赖与当前输入的batch的统计特性。

相反的,如果track_running_stats=False那么就只是计算当前输入的batch的统计特性中的均值和方差了。

当在推理阶段的时候,如果track_running_stats=False,此时如果batch_size比较小,那么其统计特性就会和全局统计特性有着较大偏差,可能导致糟糕的效果。

如果BatchNorm2d的参数track_running_stats设置False,那么加载预训练后每次模型测试测试集的结果时都不一样;track_running_stats设置为True时,每次得到的结果都一样。

running_mean和running_var参数是根据输入的batch的统计特性计算的,严格来说不算是“学习”到的参数,不过对于整个计算是很重要的。

BN层中的running_mean和running_var的更新是在forward操作中进行的,而不是在optimizer.step()中进行的,因此如果处于训练中泰,就算不进行手动step(),BN的统计特性也会变化。

model.train() #处于训练状态
for data , label in self.dataloader:
    pred =model(data)  #在这里会更新model中的BN统计特性参数,running_mean,running_var
    loss=self.loss(pred,label)
    #就算不进行下列三行,BN的统计特性参数也会变化
    opt.zero_grad()
    loss.backward()
    opt.step()

这个时候,要用model.eval()转到测试阶段,才能固定住running_mean和running_var,有时候如果是先预训练模型然后加载模型,重新跑测试数据的时候,结果不同,有一点性能上的损失,这个时候基本上是training和track_running_stats设置的不对。

如果使用两个模型进行联合训练,为了收敛更容易控制,先预训练好模型model_A,并且model_A内还有若干BN层,后续需要将model_A作为一个inference推理模型和model_B联合训练,此时希望model_A中的BN的统计特性量running_mean和running_var不会乱变化,因此就需要将model_A.eval()设置到测试模型,否则在trainning模式下,就算是不去更新模型的参数,其BN都会变化,这将导致和预期不同的结果。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python神经网络Batch Normalization底层原理详解

    目录 什么是Batch Normalization Batch Normalization的计算公式 Bn层的好处 为什么要引入γ和β变量 Bn层的代码实现 什么是Batch Normalization Batch Normalization是神经网络中常用的层,解决了很多深度学习中遇到的问题,我们一起来学习一哈. Batch Normalization是由google提出的一种训练优化方法.参考论文:Batch Normalization Accelerating Deep Network T

  • pytorch方法测试详解——归一化(BatchNorm2d)

    测试代码: import torch import torch.nn as nn m = nn.BatchNorm2d(2,affine=True) #权重w和偏重将被使用 input = torch.randn(1,2,3,4) output = m(input) print("输入图片:") print(input) print("归一化权重:") print(m.weight) print("归一化的偏重:") print(m.bias)

  • pytorch的batch normalize使用详解

    torch.nn.BatchNorm1d() 1.BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True) 对于2d或3d输入进行BN.在训练时,该层计算每次输入的均值和方差,并进行平行移动.移动平均默认的动量为0.1.在验证时,训练求得的均值/方差将用于标准化验证数据. num_features:表示输入的特征数.该期望输入的大小为'batch_size x num_features [x width]' Shape: 

  • BatchNorm2d原理、作用及pytorch中BatchNorm2d函数的参数使用

    目录 BN原理.作用 函数参数讲解 总结 BN原理.作用 函数参数讲解 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 1.num_features:一般输入参数的shape为batch_size*num_features*height*width,即为其中特征的数量,即为输入BN层的通道数: 2.eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5,避免分母为0:

  • PyTorch中topk函数的用法详解

    听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序

  • pytorch 中pad函数toch.nn.functional.pad()的用法

    padding操作是给图像外围加像素点. 为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理. 这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框.具体代码如下: import torch.nn,functional as F import torch from PIL import Image im=Image.open("heibai.jpg",'r') X=torch.Tensor(np.asarray(im)) print("shape:

  • pytorch中Parameter函数用法示例

    目录 用法介绍 代码介绍 用法介绍 pytorch中的Parameter函数可以对某个张量进行参数化.它可以将不可训练的张量转化为可训练的参数类型,同时将转化后的张量绑定到模型可训练参数的列表中,当更新模型的参数时一并将其更新. torch.nn.parameter.Parameter data (Tensor):表示需要参数化的张量 requires_grad (bool, optional):表示是否该张量是否需要梯度,默认值为True 代码介绍  pytorch中的Parameter函数具

  • pytorch中permute()函数用法补充说明(矩阵维度变化过程)

    目录 一.前言 二.举例解释 1.permute(0,1,2) 2.permute(0,1,2) ⇒ permute(0,2,1) 3.permute(0,2,1) ⇒ permute(1,0,2) 4.permute(1,0,2) ⇒ permute(0,2,1) 三.写在最后 一.前言 之前写了篇torch中permute()函数用法文章,在详细的说一下permute函数里维度变化的详细过程 非常感谢@m0_46225327对本文案例更加细节补充 注意: 本文是这篇torch中permute

  • pytorch中permute()函数用法实例详解

    目录 前言 三维情况 变化一:不改变任何参数 变化二:1与2交换 变化三:0与1交换 变化四:0与2交换 变化五:0与1交换,1与2交换 变化六:0与1交换,0与2交换 总结 前言 本文只讨论二维三维中的permute用法 最近的Attention学习中的一个permute函数让我不理解 这个光说太抽象 我就结合代码与图片解释一下 首先创建一个三维数组小实例 import torch x = torch.linspace(1, 30, steps=30).view(3,2,5) # 设置一个三维

  • python神经网络Pytorch中Tensorboard函数使用

    目录 所需库的安装 常用函数功能 1.SummaryWriter() 2.writer.add_graph() 3.writer.add_scalar() 4.tensorboard --logdir= 示例代码 所需库的安装 很多人问Pytorch要怎么可视化,于是决定搞一篇. tensorboardX==2.0 tensorflow==1.13.2 由于tensorboard原本是在tensorflow里面用的,所以需要装一个tensorflow.会自带一个tensorboard. 也可以不

  • 在pytorch中查看可训练参数的例子

    pytorch中我们有时候可能需要设定某些变量是参与训练的,这时候就需要查看哪些是可训练参数,以确定这些设置是成功的. pytorch中model.parameters()函数定义如下: def parameters(self): r"""Returns an iterator over module parameters. This is typically passed to an optimizer. Yields: Parameter: module paramete

  • 关于python中readlines函数的参数hint的相关知识总结

    readlines的帮助信息 >>> fr=open('readme.txt') >>> help(fr.readlines) Help on built-in function readlines: readlines(hint=-1, /) method of _io.TextIOWrapper instance Return a list of lines from the stream. hint can be specified to control the

  • pytorch中dataloader 的sampler 参数详解

    目录 1. dataloader() 初始化函数 2. shuffle 与sample 之间的关系 3. sample 的定义方法 3.1 sampler 参数的使用 4. batch 生成过程 1. dataloader() 初始化函数 def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_mem

随机推荐