java分布式事务之可靠消息最终一致性解决方案

目录
  • 一、什么是可靠消息最终一致性事务
    • 1、本地事务与消息发送的原子性问题
    • 2、事务参与方接收消息的可靠性
    • 3、消息重复消费的问题
  • 二、解决方案
    • 1、本地消息表方案
    • 2、RocketMQ事务消息方案

一、什么是可靠消息最终一致性事务

可靠消息最终一致性方案是指当事务发起方执行完成本地事务后并发出一条消息,事务参与方(消息消费者)一定能够接收消息并处理事务成功,此方案强调的是只要消息发给事务参与方最终事务要达到一致。

此方案是利用消息中间件完成,如下图:

事务发起方(消息生产方)将消息发给消息中间件,事务参与方从消息中间件接收消息,事务发起方和消息中间件之间,事务参与方(消息消费方)和消息中间件之间都是通过网络通信,由于网络通信的不确定性会导致分布式事务问题。

因此可靠消息最终一致性方案要解决以下几个问题:

1、本地事务与消息发送的原子性问题

本地事务与消息发送的原子性问题即:事务发起方在本地事务执行成功后消息必须发出去,否则就丢弃消息。即实现本地事务和消息发送的原子性,要么都成功,要么都失败。本地事务与消息发送的原子性问题是实现可靠消息最终一致性方案的关键问题。

先来尝试下这种操作,先发送消息,再操作数据库:

begin transaction;
//1.发送MQ
//2.数据库操作
commit transation;

这种情况下无法保证数据库操作与发送消息的一致性,因为可能发送消息成功,数据库操作失败。

你立马想到第二种方案,先进行数据库操作,再发送消息:

begin transaction;
//1.数据库操作
//2.发送MQ
commit transation;

这种情况下貌似没有问题,如果发送MQ消息失败,就会抛出异常,导致数据库事务回滚。但如果是超时异常,数据库回滚,但MQ其实已经正常发送了,同样会导致不一致。

2、事务参与方接收消息的可靠性

事务参与方必须能够从消息队列接收到消息,如果接收消息失败可以重复接收消息。

3、消息重复消费的问题

由于网络2的存在,若某一个消费节点超时但是消费成功,此时消息中间件会重复投递此消息,就导致了消息的重复消费。

要解决消息重复消费的问题就要实现事务参与方的方法幂等性。

二、解决方案

1、本地消息表方案

本地消息表这个方案最初是eBay提出的,此方案的核心是通过本地事务保证数据业务操作和消息的一致性,然后通过定时任务将消息发送至消息中间件,待确认消息发送给消费方成功再将消息删除。

下面以注册送积分为例来说明:两个微服务交互,用户服务和积分服务,用户服务负责添加用户,积分服务负责增加积分。

交互流程如下:

  • 1.用户注册

用户服务在本地事务新增用户和增加 ”积分消息日志“。(用户表和消息表通过本地事务保证一致)

下边是伪代码:

begin transaction;
//1.新增用户
//2.存储积分消息日志
commit transation;

这种情况下,本地数据库操作与存储积分消息日志处于同一个事务中,本地数据库操作与记录消息日志操作具备原子性。

  • 2.定时任务扫描日志

如何保证将消息发送给消息队列呢?

经过第一步消息已经写到消息日志表中,可以启动独立的线程,定时对消息日志表中的消息进行扫描并发送至消息中间件,在消息中间件反馈发送成功后删除该消息日志,否则等待定时任务下一周期重试。

  • 3.消费消息

如何保证消费者一定能消费到消息呢?

这里可以使用MQ的ack(即消息确认)机制,消费者监听MQ,如果消费者接收到消息并且业务处理完成后向MQ发送ack(即消息确认),此时说明消费者正常消费消息完成,MQ将不再向消费者推送消息,否则消费者会不断重试向消费者来发送消息。

积分服务接收到”增加积分“消息,开始增加积分,积分增加成功后向消息中间件回应ack,否则消息中间件将重复投递此消息。

由于消息会重复投递,积分服务的”增加积分“功能需要实现幂等性。

2、RocketMQ事务消息方案

RocketMQ 是一个来自阿里巴巴的分布式消息中间件,于 2012 年开源,并在 2017 年正式成为 Apache 顶级项目。据了解,包括阿里云上的消息产品以及收购的子公司在内,阿里集团的消息产品全线都运行在 RocketMQ 之上,并且最近几年的双十一大促中,RocketMQ 都有抢眼表现。Apache RocketMQ 4.3之后的版本正式支持事务消息,为分布式事务实现提供了便利性支持。

RocketMQ 事务消息设计则主要是为了解决 Producer 端的消息发送与本地事务执行的原子性问题,RocketMQ 的设计中 broker 与 producer 端的双向通信能力,使得 broker 天生可以作为一个事务协调者存在;而 RocketMQ本身提供的存储机制为事务消息提供了持久化能力;RocketMQ 的高可用机制以及可靠消息设计则为事务消息在系统发生异常时依然能够保证达成事务的最终一致性。

在RocketMQ 4.3后实现了完整的事务消息,实际上其实是对本地消息表的一个封装,将本地消息表移动到了MQ内部,解决 Producer 端的消息发送与本地事务执行的原子性问题。

执行流程如下:

为方便理解我们还以注册送积分的例子来描述 整个流程。

Producer 即MQ发送方,本例中是用户服务,负责新增用户。MQ订阅方即消息消费方,本例中是积分服务,负责新增积分。

  • 1.Producer 发送事务消息

Producer (MQ发送方)发送事务消息至MQ Server,MQ Server将消息状态标记为Prepared(预备状态),注意此时这条消息消费者(MQ订阅方)是无法消费到的。

本例中,Producer 发送 ”增加积分消息“ 到MQ Server。

  • 2.MQ Server回应消息发送成功

MQ Server接收到Producer 发送给的消息则回应发送成功表示MQ已接收到消息。

  • 3.Producer 执行本地事务

Producer 端执行业务代码逻辑,通过本地数据库事务控制。

本例中,Producer 执行添加用户操作。

  • 4.消息投递

若Producer 本地事务执行成功则自动向MQServer发送commit消息,MQ Server接收到commit消息后将”增加积分消息“ 状态标记为可消费,此时MQ订阅方(积分服务)即正常消费消息;若Producer 本地事务执行失败则自动向MQServer发送rollback消息,MQ Server接收到rollback消息后将删除”增加积分消息“ 。

MQ订阅方(积分服务)消费消息,消费成功则向MQ回应ack,否则将重复接收消息。这里ack默认自动回应,即程序执行正常则自动回应ack。

  • 5.事务回查

如果执行Producer端本地事务过程中,执行端挂掉,或者超时,MQ Server将会不停的询问同组的其他 Producer来获取事务执行状态,这个过程叫事务回查。MQ Server会根据事务回查结果来决定是否投递消息。

以上主干流程已由RocketMQ实现,对用户侧来说,用户需要分别实现本地事务执行以及本地事务回查方法,因此只需关注本地事务的执行状态即可,更多关于java分布式事务消息一致性的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java分布式学习之Kafka消息队列

    目录 介绍 Kafka核心相关名称 kafka集群安装 kafka使用 kafka文件存储 Springboot整合kafka 介绍 Apache Kafka 是分布式发布-订阅消息系统,在 kafka官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统. 它最初由LinkedIn公司开发,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和可复制的提交日志服务. 注意:Kafka并没有遵循JMS规范(

  • 详解Java分布式系统中session一致性问题

    业务场景 在单机系统中,用户登陆之后,服务端会保存用户的会话信息,只要用户不退出重新登陆,在一段时间内用户可以一直访问该网站,无需重复登陆.用户的信息存在服务端的 session 中,session中可以存放服务端需要的一些用户信息,例如用户ID,所属公司companyId,所属部门deptId等等. 但是随着业务的发展,技术架构需要调整,原来的单机系统逐渐被更换,架构由单机扩展到分布式,甚至当下流行的微服务.虽然在用户端看来系统仍然是一个整体,但在技术端来说业务则被拆分成多个模块,各个模块之间

  • Java分布式事务管理框架之Seata

    目录 Seata介绍 三大组件 实现原理 四种事务模式 搭建seata服务端 单机版安装 集群安装 Seata介绍 Seata:Simple Extensible Autonomous Transaction Architecture,简易可扩展的自治式分布式事务管理框架,其前身是fescar.是一种简单分布式事务的解决方案.Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务.Seata 将为用户提供了 AT.TCC.SAGA 和 XA 事务模式,为用户打造一

  • 详解Java分布式事务的 6 种解决方案

    介绍 在分布式系统.微服务架构大行其道的今天,服务间互相调用出现失败已经成为常态.如何处理异常,如何保证数据一致性,成为微服务设计过程中,绕不开的一个难题. 在不同的业务场景下,解决方案会有所差异,常见的方式有: 阻塞式重试: 2PC.3PC 传统事务: 使用队列,后台异步处理: TCC 补偿事务: 本地消息表(异步确保): MQ 事务. 本文侧重于其他几项,关于 2PC.3PC 传统事务,网上资料已经非常多了,这里不多做重复. 阻塞式重试 在微服务架构中,阻塞式重试是比较常见的一种方式.伪代码

  • 详解Java分布式系统中一致性哈希算法

    业务场景 近年来B2C.O2O等商业概念的提出和移动端的发展,使得分布式系统流行了起来.分布式系统相对于单系统,解决了流量大.系统高可用和高容错等问题.功能强大也意味着实现起来需要更多技术的支持.例如系统访问层的负载均衡,缓存层的多实例主从复制备份,数据层的分库分表等. 我们以负载均衡为例,常见的负载均衡方法有很多,但是它们的优缺点也都很明显: 随机访问策略.系统随机访问,缺点:可能造成服务器负载压力不均衡,俗话讲就是撑的撑死,饿的饿死. 轮询策略.请求均匀分配,如果服务器有性能差异,则无法实现

  • java分布式事务之可靠消息最终一致性解决方案

    目录 一.什么是可靠消息最终一致性事务 1.本地事务与消息发送的原子性问题 2.事务参与方接收消息的可靠性 3.消息重复消费的问题 二.解决方案 1.本地消息表方案 2.RocketMQ事务消息方案 一.什么是可靠消息最终一致性事务 可靠消息最终一致性方案是指当事务发起方执行完成本地事务后并发出一条消息,事务参与方(消息消费者)一定能够接收消息并处理事务成功,此方案强调的是只要消息发给事务参与方最终事务要达到一致. 此方案是利用消息中间件完成,如下图: 事务发起方(消息生产方)将消息发给消息中间

  • 详解Java TCC分布式事务实现原理

    概述 之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下.很多朋友看了还是不知道分布式事务到底怎么回事,在项目里到底如何使用. 所以这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是 TCC 分布式事务. 业务场景介绍 咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景. 那对一个订单支付之后,我们需要做下面的步骤: 更改订单的状态为"已支付" 扣减商品库存 给会员增加积分 创建销售出库单通知仓

  • 浅谈Java实现分布式事务的三种方案

    一.问题描述 用户支付完成会将支付状态及订单状态保存在订单数据库中,由订单服务去维护订单数据库.由库存服务去维护库存数据库的信息.下图是系统结构图: 如何实现两个分布式服务(订单服务.库存服务)共同完成一件事即订单支付成功自动减库存,这里的关键是如何保证两个分布式服务的事务的一致性. 尝试解决上边的需求,在订单服务中远程调用减库存接口,伪代码如下: 订单支付结果通知方法{ ​ 更新支付表中支付状态为"成功". ​ 远程调用减库存接口减库存. } 上边的逻辑说明: 1.更新支付表状态为本

  • 带你用Python实现Saga 分布式事务的方法

    目录 分布式事务 SAGA SAGA实践 处理网络异常 处理回滚 小结 银行跨行转账业务是一个典型分布式事务场景,假设 A 需要跨行转账给 B,那么就涉及两个银行的数据,无法通过一个数据库的本地事务保证转账的 ACID,只能够通过分布式事务来解决. 分布式事务 分布式事务在分布式环境下,为了满足可用性.性能与降级服务的需要,降低一致性与隔离性的要求,一方面遵循 BASE 理论: 基本业务可用性( Basic Availability ) 柔性状态( Soft state ) 最终一致性( Eve

  • 讲解如何利用 Python完成 Saga 分布式事务

    目录 1.分布式事务 2.SAGA 3.SAGA 实践 4.处理网络异常 5.处理回滚 6.小结 银行跨行转账业务是一个典型分布式事务场景,假设 A 需要跨行转账给 B,那么就涉及两个银行的数据,无法通过一个数据库的本地事务保证转账的 ACID,只能够通过分布式事务来解决. 1.分布式事务 分布式事务在分布式环境下,为了满足可用性.性能与降级服务的需要,降低一致性与隔离性的要求,一方面遵循 BASE 理论: 基本业务可用性( Basic Availability ) 柔性状态( Soft sta

  • 用python完成一个分布式事务TCC

    前言: 什么是分布式事务?银行跨行转账业务是一个典型分布式事务场景,假设A需要跨行转账给B,那么就涉及两个银行的数据,无法通过一个数据库的本地事务保证转账的ACID,只能够通过分布式事务来解决. 分布式事务就是指事务的发起者.资源及资源管理器和事务协调者分别位于分布式系统的不同节点之上.在上述转账的业务中,用户A-100操作和用户B+100操作不是位于同一个节点上.本质上来说,分布式事务就是为了保证在分布式场景下,数据操作的正确执行. 什么是TCC分布式事务,TCC是Try.Confirm.Ca

  • SpringCloud+RocketMQ实现分布式事务的实践

    目录 一.RocketMQ的分布式事务结构和说明 二.搭建RocketMQ 三.事务场景,然后准备工程,运行代码 随着互联网公司的微服务越来越多,分布式事务已经成为了我们的经常使用的.所以我们来一步一步的实现基于RocketMQ的分布式事务.接下来,我们将要做的主题写出来. RocketMQ的分布式事务结构和说明 搭建RocketMQ步骤 事务场景,然后准备工程,运行代码 一.RocketMQ的分布式事务结构和说明 我们通过下图来了解一下RocketMQ实现分布式事务的结构.采用半消息机制实现分

随机推荐