python实现梯度下降求解逻辑回归

本文实例为大家分享了python实现梯度下降求解逻辑回归的具体代码,供大家参考,具体内容如下

对比线性回归理解逻辑回归,主要包含回归函数,似然函数,梯度下降求解及代码实现

线性回归

1.线性回归函数

似然函数的定义:给定联合样本值X下关于(未知)参数 的函数

似然函数:什么样的参数跟我们的数据组合后恰好是真实值

2.线性回归似然函数

对数似然:

3.线性回归目标函数

(误差的表达式,我们的目的就是使得真实值与预测值之前的误差最小)

(导数为0取得极值,得到函数的参数)

逻辑回归

逻辑回归是在线性回归的结果外加一层Sigmoid函数

1.逻辑回归函数

2.逻辑回归似然函数

前提数据服从伯努利分布

对数似然:

引入 转变为梯度下降任务,逻辑回归目标函数

梯度下降法求解

我的理解就是求导更新参数,达到一定条件后停止,得到近似最优解

代码实现

Sigmoid函数

def sigmoid(z):    
​​​​​​​   return 1 / (1 + np.exp(-z))

预测函数

def model(X, theta):    
    return sigmoid(np.dot(X, theta.T))

目标函数

def cost(X, y, theta):    
     left = np.multiply(-y, np.log(model(X, theta)))    
     right = np.multiply(1 - y, np.log(1 - model(X, theta)))    
​​​​​​​     return np.sum(left - right) / (len(X))

梯度

def gradient(X, y, theta):    
  grad = np.zeros(theta.shape)    
  error = (model(X, theta)- y).ravel()    
  for j in range(len(theta.ravel())): #for each parmeter        
     term = np.multiply(error, X[:,j])        
     grad[0, j] = np.sum(term) / len(X)    
​​​​​​​   return grad

梯度下降停止策略

STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2
 
def stopCriterion(type, value, threshold):
    # 设定三种不同的停止策略
    if type == STOP_ITER:  # 设定迭代次数
        return value > threshold
    elif type == STOP_COST:  # 根据损失值停止
        return abs(value[-1] - value[-2]) < threshold
    elif type == STOP_GRAD:  # 根据梯度变化停止
        return np.linalg.norm(value) < threshold

样本重新洗牌

import numpy.random
#洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols-1]
    y = data[:, cols-1:]
    return X, y

梯度下降求解

def descent(data, theta, batchSize, stopType, thresh, alpha):
    # 梯度下降求解
 
    init_time = time.time()
    i = 0  # 迭代次数
    k = 0  # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape)  # 计算的梯度
    costs = [cost(X, y, theta)]  # 损失值
 
    while True:
        grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
        k += batchSize  # 取batch数量个数据
        if k >= n:
            k = 0
            X, y = shuffleData(data)  # 重新洗牌
        theta = theta - alpha * grad  # 参数更新
        costs.append(cost(X, y, theta))  # 计算新的损失
        i += 1
 
        if stopType == STOP_ITER:
            value = i
        elif stopType == STOP_COST:
            value = costs
        elif stopType == STOP_GRAD:
            value = grad
        if stopCriterion(stopType, value, thresh): break
 
    return theta, i - 1, costs, grad, time.time() - init_time

完整代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import numpy.random
import time
 
 
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
 
 
def model(X, theta):
    return sigmoid(np.dot(X, theta.T))
 
 
def cost(X, y, theta):
    left = np.multiply(-y, np.log(model(X, theta)))
    right = np.multiply(1 - y, np.log(1 - model(X, theta)))
    return np.sum(left - right) / (len(X))
 
 
def gradient(X, y, theta):
    grad = np.zeros(theta.shape)
    error = (model(X, theta) - y).ravel()
    for j in range(len(theta.ravel())):  # for each parmeter
        term = np.multiply(error, X[:, j])
        grad[0, j] = np.sum(term) / len(X)
    return grad
 
 
STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2
 
 
def stopCriterion(type, value, threshold):
    # 设定三种不同的停止策略
    if type == STOP_ITER:  # 设定迭代次数
        return value > threshold
    elif type == STOP_COST:  # 根据损失值停止
        return abs(value[-1] - value[-2]) < threshold
    elif type == STOP_GRAD:  # 根据梯度变化停止
        return np.linalg.norm(value) < threshold
 
 
# 洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols - 1]
    y = data[:, cols - 1:]
    return X, y
 
 
def descent(data, theta, batchSize, stopType, thresh, alpha):
    # 梯度下降求解
 
    init_time = time.time()
    i = 0  # 迭代次数
    k = 0  # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape)  # 计算的梯度
    costs = [cost(X, y, theta)]  # 损失值
 
    while True:
        grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
        k += batchSize  # 取batch数量个数据
        if k >= n:
            k = 0
            X, y = shuffleData(data)  # 重新洗牌
        theta = theta - alpha * grad  # 参数更新
        costs.append(cost(X, y, theta))  # 计算新的损失
        i += 1
 
        if stopType == STOP_ITER:
            value = i
        elif stopType == STOP_COST:
            value = costs
        elif stopType == STOP_GRAD:
            value = grad
        if stopCriterion(stopType, value, thresh): break
 
    return theta, i - 1, costs, grad, time.time() - init_time
 
 
def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    # import pdb
    # pdb.set_trace()
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    name = "Original" if (data[:, 1] > 2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize == n:
        strDescType = "Gradient"  # 批量梯度下降
    elif batchSize == 1:
        strDescType = "Stochastic"  # 随机梯度下降
    else:
        strDescType = "Mini-batch ({})".format(batchSize)  # 小批量梯度下降
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER:
        strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST:
        strStop = "costs change < {}".format(thresh)
    else:
        strStop = "gradient norm < {}".format(thresh)
    name += strStop
    print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12, 4))
    ax.plot(np.arange(len(costs)), costs, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta
 
 
path = 'data' + os.sep + 'LogiReg_data.txt'
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
positive = pdData[pdData['Admitted'] == 1]
negative = pdData[pdData['Admitted'] == 0]
 
# 画图观察样本情况
fig, ax = plt.subplots(figsize=(10, 5))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
 
pdData.insert(0, 'Ones', 1)
 
# 划分训练数据与标签
orig_data = pdData.values
cols = orig_data.shape[1]
X = orig_data[:, 0:cols - 1]
y = orig_data[:, cols - 1:cols]
# 设置初始参数0
theta = np.zeros([1, 3])
 
# 选择的梯度下降方法是基于所有样本的
n = 100
runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)
runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)
runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
 
from sklearn import preprocessing as pp
 
# 数据预处理
scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
 
runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001)
theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002 / 5, alpha=0.001)
runExpe(scaled_data, theta, 16, STOP_GRAD, thresh=0.002 * 2, alpha=0.001)
 
 
# 设定阈值
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]
 
 
# 计算精度
scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print('accuracy = {0}%'.format(accuracy))

逻辑回归的优缺点

优点

  • 形式简单,模型的可解释性非常好。从特征的权重可以看到不同的特征对最后结果的影响,某个特征的权重值比较高,那么这个特征最后对结果的影响会比较大。
  • 模型效果不错。在工程上是可以接受的(作为baseline),如果特征工程做的好,效果不会太差,并且特征工程可以大家并行开发,大大加快开发的速度。
  • 训练速度较快。分类的时候,计算量仅仅只和特征的数目相关。并且逻辑回归的分布式优化sgd发展比较成熟,训练的速度可以通过堆机器进一步提高,这样我们可以在短时间内迭代好几个版本的模型。
  • 资源占用小,尤其是内存。因为只需要存储各个维度的特征值。
  • 方便输出结果调整。逻辑回归可以很方便的得到最后的分类结果,因为输出的是每个样本的概率分数,我们可以很容易的对这些概率分数进行cutoff,也就是划分阈值(大于某个阈值的是一类,小于某个阈值的是一类)。

缺点

  • 准确率并不是很高。因为形式非常的简单(非常类似线性模型),很难去拟合数据的真实分布。
  • 很难处理数据不平衡的问题。举个例子:如果我们对于一个正负样本非常不平衡的问题比如正负样本比 10000:1.我们把所有样本都预测为正也能使损失函数的值比较小。但是作为一个分类器,它对正负样本的区分能力不会很好。
  • 处理非线性数据较麻烦。逻辑回归在不引入其他方法的情况下,只能处理线性可分的数据,或者进一步说,处理二分类的问题 。
  • 逻辑回归本身无法筛选特征。有时候,我们会用gbdt来筛选特征,然后再上逻辑回归。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python机器学习理论与实战(四)逻辑回归

    从这节算是开始进入"正规"的机器学习了吧,之所以"正规"因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证.这整套的流程是机器学习必经环节.今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning).逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计

  • python实现逻辑回归的方法示例

    本文实现的原理很简单,优化方法是用的梯度下降.后面有测试结果. 先来看看实现的示例代码: # coding=utf-8 from math import exp import matplotlib.pyplot as plt import numpy as np from sklearn.datasets.samples_generator import make_blobs def sigmoid(num): ''' :param num: 待计算的x :return: sigmoid之后的数

  • python代码实现逻辑回归logistic原理

    Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 使用数据类型:数值型和标称型数据. 介绍逻辑回归之前,我们先看一问题,有个黑箱,里面有白球和黑球,如何判断它们的比例. 我们从里面抓3个球,2个黑球,1个白球.这时候,有人就直接得出了黑球67%,白球占比33%.这个时候,其实这个人使用了最大似然概率的思想,通俗来讲,

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

  • python 实现逻辑回归

    逻辑回归 适用类型:解决二分类问题 逻辑回归的出现:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类.所以逻辑回归就是将线性回归的结果,通过Sigmoid函数映射到(0,1)之间 线性回归的决策函数:数据与θ的乘法,数据的矩阵格式(样本数×列数),θ的矩阵格式(列数×1) 将其通过Sigmoid函数,获得逻辑回归的决策函数 使用Sigmoid函数的原因: 可以对(-∞, +∞)的结果,映射到(0, 1)之间作为概率 可以将1/2作为决策边界 数学特性好,

  • Python实现的逻辑回归算法示例【附测试csv文件下载】

    本文实例讲述了Python实现的逻辑回归算法.分享给大家供大家参考,具体如下: 使用python实现逻辑回归 Using Python to Implement Logistic Regression Algorithm 菜鸟写的逻辑回归,记录一下学习过程 代码: #encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/10 Project: Using Python to Implement Logisti

  • python编写Logistic逻辑回归

    用一条直线对数据进行拟合的过程称为回归.逻辑回归分类的思想是:根据现有数据对分类边界线建立回归公式. 公式表示为: 一.梯度上升法 每次迭代所有的数据都参与计算. for 循环次数:         训练 代码如下: import numpy as np import matplotlib.pyplot as plt def loadData(): labelVec = [] dataMat = [] with open('testSet.txt') as f: for line in f.re

  • python sklearn库实现简单逻辑回归的实例代码

    Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法. Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上 代

  • python 牛顿法实现逻辑回归(Logistic Regression)

    本文采用的训练方法是牛顿法(Newton Method). 代码 import numpy as np class LogisticRegression(object): """ Logistic Regression Classifier training by Newton Method """ def __init__(self, error: float = 0.7, max_epoch: int = 100): ""

  • Python利用逻辑回归分类实现模板

    Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 使用数据类型:数值型和标称型数据. 好了,下面开始正文. 算法的思路我就不说了,我就提供一个万能模板,适用于任何纬度数据集. 虽然代码类似于梯度下降,但他是个分类算法 定义sigmoid函数 def sigmoid(x): return 1/(1+np.exp(-x)

随机推荐