python机器学习sklearn实现识别数字

目录
  • 简介
  • 数据集
  • 数据处理
    • 数据分离
  • 训练数据
  • 数据可视化
  • 完整代码

简介

本文主要简述如何通过sklearn模块来进行预测和学习,最后再以图表这种更加直观的方式展现出来

数据集

学习数据

预测数据

数据处理

数据分离

因为我们打开我们的的学习数据集,最后一项是我们的真实数值,看过小唐上一篇的人都知道,老规矩先进行拆分,前面的特征放一块,后面的真实值放一块,同时由于数据没有列名,我们选择使用iloc[]来实现分离

def shuju(tr_path,ts_path,sep='\t'):
    train=pd.read_csv(tr_path,sep=sep)
    test=pd.read_csv(ts_path,sep=sep)
    #特征和结果分离
    train_features=train.iloc[:,:-1].values
    train_labels=train.iloc[:,-1].values
    test_features = test.iloc[:, :-1].values
    test_labels = test.iloc[:, -1].values
    return train_features,test_features,train_labels,test_labels

训练数据

我们在这里直接使用sklearn函数,通过选择模型,然后直接生成其识别规则

#训练数据
def train_tree(*data):
    x_train, x_test, y_train, y_test=data
    clf=DecisionTreeClassifier()
    clf.fit(x_train,y_train)
    print("学习模型预测成绩:{:.4f}".format(clf.score(x_train, y_train)))
    print("实际模型预测成绩:{:.4f}".format(clf.score(x_test, y_test)))
    #返回学习模型
    return clf

数据可视化

为了让我们的观察更加直观,我们还可以使用matplotlib来进行观测

def plot_imafe(test,test_labels,preds):
    plt.ion()
    plt.show()
    for i in range(50):
        label,pred=test_labels[i],preds[i]
        title='实际值:{},predict{}'.format(label,pred)
        img=test[i].reshape(28,28)
        plt.imshow(img,cmap="binary")
        plt.title(title)
        plt.show()
    print('done')

结果

完整代码

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt

def shuju(tr_path,ts_path,sep='\t'):
    train=pd.read_csv(tr_path,sep=sep)
    test=pd.read_csv(ts_path,sep=sep)
    #特征和结果分离
    train_features=train.iloc[:,:-1].values
    train_labels=train.iloc[:,-1].values
    test_features = test.iloc[:, :-1].values
    test_labels = test.iloc[:, -1].values
    return train_features,test_features,train_labels,test_labels
#训练数据
def train_tree(*data):
    x_train, x_test, y_train, y_test=data
    clf=DecisionTreeClassifier()
    clf.fit(x_train,y_train)
    print("学习模型预测成绩:{:.4f}".format(clf.score(x_train, y_train)))
    print("实际模型预测成绩:{:.4f}".format(clf.score(x_test, y_test)))
    #返回学习模型
    return clf

def plot_imafe(test,test_labels,preds):
    plt.ion()
    plt.show()
    for i in range(50):
        label,pred=test_labels[i],preds[i]
        title='实际值:{},predict{}'.format(label,pred)
        img=test[i].reshape(28,28)
        plt.imshow(img,cmap="binary")
        plt.title(title)
        plt.show()
    print('done')

train_features,test_features,train_labels,test_labels=shuju(r"C:\Users\twy\PycharmProjects\1\train_images.csv",r"C:\Users\twy\PycharmProjects\1\test_images.csv")
clf=train_tree(train_features,test_features,train_labels,test_labels)
preds=clf.predict(test_features)
plot_imafe(test_features,test_labels,preds)

到此这篇关于python机器学习sklearn实现识别数字的文章就介绍到这了,更多相关python sklearn识别数字内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • kNN算法python实现和简单数字识别的方法

    本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • python实现识别手写数字 python图像识别算法

    写在前面 这一段的内容可以说是最难的一部分之一了,因为是识别图像,所以涉及到的算法会相比之前的来说比较困难,所以我尽量会讲得清楚一点. 而且因为在编写的过程中,把前面的一些逻辑也修改了一些,将其变得更完善了,所以一切以本篇的为准.当然,如果想要直接看代码,代码全部放在我的GitHub中,所以这篇文章主要负责讲解,如需代码请自行前往GitHub. 本次大纲 上一次写到了数据库的建立,我们能够实时的将更新的训练图片存入CSV文件中.所以这次继续往下走,该轮到识别图片的内容了. 首先我们需要从文件夹中

  • Python(TensorFlow框架)实现手写数字识别系统的方法

    手写数字识别算法的设计与实现 本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统.这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题.本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述. 项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统. 设计识别率高的算法,实现快速识别的系统. 1 LeNet-5模型的介绍 本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示

  • python 实现识别图片上的数字

    Python 3.6 版本 Pytesseract 图像验证码识别 环境: (1) win7 64位 (2) Idea (3) python 3.6 (4) pip install pillow <&nbsp>pip install pytesseract (5) 识别引擎tesseract-ocr 安装 安装tesseract-ocr的识别引擎 第一步:下载安装包 根据https://github.com/UB-Mannheim/tesseract/wiki,找到下载安装包. 我下载

  • python opencv实现信用卡的数字识别

    本项目利用python以及opencv实现信用卡的数字识别 前期准备 导入工具包 定义功能函数 模板图像处理 读取模板图像 cv2.imread(img) 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 二值化 cv2.threshold() 轮廓 - 轮廓 信用卡图像处理 读取信用卡图像 cv2.imread(img) 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 礼帽处理 cv2.morphologyEx(gray

  • python实现基于SVM手写数字识别功能

    本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下 1.SVM手写数字识别 识别步骤: (1)样本图像的准备. (2)图像尺寸标准化:将图像大小都标准化为8*8大小. (3)读取未知样本图像,提取图像特征,生成图像特征组. (4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出. 识别代码: #!/usr/bin/env python import numpy as np import mlpy import cv2 print 'loading ...'

  • python机器学习sklearn实现识别数字

    目录 简介 数据集 数据处理 数据分离 训练数据 数据可视化 完整代码 简介 本文主要简述如何通过sklearn模块来进行预测和学习,最后再以图表这种更加直观的方式展现出来 数据集 学习数据 预测数据 数据处理 数据分离 因为我们打开我们的的学习数据集,最后一项是我们的真实数值,看过小唐上一篇的人都知道,老规矩先进行拆分,前面的特征放一块,后面的真实值放一块,同时由于数据没有列名,我们选择使用iloc[]来实现分离 def shuju(tr_path,ts_path,sep='\t'): tra

  • python机器学习Sklearn实战adaboost算法示例详解

    目录 pandas批量处理体测成绩 adaboost adaboost原理案例举例 弱分类器合并成强分类器 pandas批量处理体测成绩 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt data = pd.read_excel("/Users/zhucan/Desktop/18级高一体测成绩汇总.xls") cond =

  • Python 机器学习工具包SKlearn的安装与使用

    1.SKlearn 是什么 Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包. Sklearn 主要用Python编写,建立在 Numpy.Scipy.Pandas 和 Matplotlib 的基础上,也用 Cython编写了一些核心算法来提高性能. Sklearn 包括六大功能模块: 分类(Classification):识别样本属于哪个类别,常用算法有 SVM(支持向量机).nearest neighbors(最近邻).random forest(

  • python使用KNN算法识别手写数字

    本文实例为大家分享了python使用KNN算法识别手写数字的具体代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- #pip install numpy import os import os.path from numpy import * import operator import time from os import listdir """ 描述: KNN算法实现分类器 参数: inputPoint:测试集 dataSet:训练集 lab

  • caffe的python接口之手写数字识别mnist实例

    目录 引言 一.数据准备 二.导入caffe库,并设定文件路径 二.生成配置文件 三.生成参数文件solver 四.开始训练模型 五.完成的python文件 引言 深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些

  • python机器学习之神经网络

    手写数字识别算法 import pandas as pd import numpy as np from sklearn.neural_network import MLPRegressor #从sklearn的神经网络中引入多层感知器 data_tr = pd.read_csv('BPdata_tr.txt') # 训练集样本 data_te = pd.read_csv('BPdata_te.txt') # 测试集样本 X=np.array([[0.568928884039633],[0.37

  • Python机器学习应用之基于线性判别模型的分类篇详解

    目录 一.Introduction 1 LDA的优点 2 LDA的缺点 3 LDA在模式识别领域与自然语言处理领域的区别 二.Demo 三.基于LDA 手写数字的分类 四.小结 一.Introduction 线性判别模型(LDA)在模式识别领域(比如人脸识别等图形图像识别领域)中有非常广泛的应用.LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. LDA的思想可以用一句话概括,就是"投影后类内方差最小,类间方

  • Python机器学习库scikit-learn入门开发示例

    目录 1.数据采集和标记 2.特征选择 3.数据清洗 4.模型选择 5.模型训练 6.模型测试 7.模型保存与加载 8.实例 数据采集和标记 特征选择 模型训练 模型测试 模型保存与加载 1.数据采集和标记 先采集数据,再对数据进行标记.其中采集数据要就有代表性,以确保最终训练出来模型的准确性. 2.特征选择 选择特征的直观方法:直接使用图片的每个像素点作为一个特征. 数据保存为样本个数×特征个数格式的array对象.scikit-learn使用Numpy的array对象来表示数据,所有的图片数

  • Python机器学习之KNN近邻算法

    一.KNN概述 简单来说,K-近邻算法采用测量不同特征值之间的距离方法进行分类 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 适用数据范围:数值型和标称2型 工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系(训练集).输入没有标签的新数据之后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签(测试集).一般来说,我们只选择样

  • python 如何做一个识别率百分百的OCR

    写在前面 当然这里说的百分百可能有点夸张,但其实想象一下,游戏里面的某个窗口的字符就是那种样子,不会变化的.而且识别的字符可能也不需要太多.中文有大几千个常用字,还有各种符号,其实都不需要. 这里针对的场景很简单,主要是有以下几点: 识别的字符不多:只要识别几十个常用字符即可,比如说26个字母,数字,还有一些中文. 背景统一,字体一致:我们不是做验证码识别,我们要识别的字符都是清晰可见的. 字符和背景易分割:一般来说就是对图片灰度化之后,黑底白字或者白底黑字这种. 技术栈 这里用到的主要就是py

随机推荐