Netty分布式编码器及写数据事件处理使用场景

目录
  • 概述
  • 编码器
    • 第一节: writeAndFlush的事件传播
      • 我们看一个最简单的使用的场景
      • 我们跟到writeAndFlush方法中
      • 我们跟到invokeWriteAndFlush中
      • 我们再看invokeFlush0方法

概述

上一小章我们介绍了解码器, 这一章我们介绍编码器

其实编码器和解码器比较类似, 编码器也是一个handler, 并且属于outbounfHandle, 就是将准备发出去的数据进行拦截, 拦截之后进行相应的处理之后再次进发送处理, 如果理解了解码器, 那么编码器的相关内容理解起来也比较容易

编码器

第一节: writeAndFlush的事件传播

我们之前在学习pipeline的时候, 讲解了write事件的传播过程, 但在实际使用的时候, 我们通常不会调用channel的write方法, 因为该方法只会写入到发送数据的缓存中, 并不会直接写入channel中, 如果想写入到channel中, 还需要调用flush方法

实际使用过程中, 我们用的更多的是writeAndFlush方法, 这方法既能将数据写到发送缓存中, 也能刷新到channel中

我们看一个最简单的使用的场景

public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
    ctx.channel().writeAndFlush("test data");
}

学过netty的同学们对此肯定不陌生, 通过这种方式, 可以将数据发送到channel中, 对方可以收到响应

我们跟到writeAndFlush方法中

首先会走到AbstractChannel的writeAndFlush:

public ChannelFuture writeAndFlush(Object msg) {
    return pipeline.writeAndFlush(msg);
}

继续跟到DefualtChannelPipeline中的writeAndFlush方法中:

public final ChannelFuture writeAndFlush(Object msg) {
    return tail.writeAndFlush(msg);
}

这里我们看到, writeAndFlush是从tail节点进行传播, 有关事件传播, 我们再pipeline中进行过剖析, 相信这个不会陌生

继续跟, 会跟到AbstractChannelHandlerContext中的writeAndFlush方法:

public ChannelFuture writeAndFlush(Object msg) {
    return writeAndFlush(msg, newPromise());
}

继续跟:

public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) {
    if (msg == null) {
        throw new NullPointerException("msg");
    }
    if (!validatePromise(promise, true)) {
        ReferenceCountUtil.release(msg);
        // cancelled
        return promise;
    }
    write(msg, true, promise);
    return promise;
}

继续跟write方法:

private void write(Object msg, boolean flush, ChannelPromise promise) {
    //findContextOutbound()寻找前一个outbound节点
    //最后到head节点结束
    AbstractChannelHandlerContext next = findContextOutbound();
    final Object m = pipeline.touch(msg, next);
    EventExecutor executor = next.executor();
    if (executor.inEventLoop()) {
        if (flush) {
            next.invokeWriteAndFlush(m, promise);
        } else {
            //没有调flush
            next.invokeWrite(m, promise);
        }
    } else {
        AbstractWriteTask task;
        if (flush) {
            task = WriteAndFlushTask.newInstance(next, m, promise);
        }  else {
            task = WriteTask.newInstance(next, m, promise);
        }
        safeExecute(executor, task, promise, m);
    }
}

这里的逻辑我们也不陌生, 找到下一个节点, 因为writeAndFlush是从tail节点开始的, 并且是outBound的事件, 所以这里会找到tail节点的上一个outBoundHandler, 有可能是编码器, 也有可能是我们业务处理的handler

if (executor.inEventLoop()) 判断是否是eventLoop线程, 如果不是, 则封装成task通过nioEventLoop异步执行, 我们这里先按照是eventLoop线程分析

首先, 这里通过flush判断是否调用了flush, 这里显然是true, 因为我们调用的方法是writeAndFlush

我们跟到invokeWriteAndFlush中

private void invokeWriteAndFlush(Object msg, ChannelPromise promise) {
    if (invokeHandler()) {
        //写入
        invokeWrite0(msg, promise);
        //刷新
        invokeFlush0();
    } else {
        writeAndFlush(msg, promise);
    }
}

这里就真相大白了, 其实在writeAndFlush中, 首先调用write, write完成之后再调用flush方法进行的刷新

首先跟到invokeWrite0方法中:

private void invokeWrite0(Object msg, ChannelPromise promise) {
    try {
        //调用当前handler的wirte()方法
        ((ChannelOutboundHandler) handler()).write(this, msg, promise);
    } catch (Throwable t) {
        notifyOutboundHandlerException(t, promise);
    }
}

该方法我们在pipeline中已经进行过分析, 就是调用当前handler的write方法, 如果当前handler中write方法是继续往下传播, 在会继续传播写事件, 直到传播到head节点, 最后会走到HeadContext的write方法中

跟到HeadContext的write方法中:

public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
    unsafe.write(msg, promise);
}

这里通过当前channel的unsafe对象对将当前消息写到缓存中, 写入的过程, 我们之后的小节进行分析

回到到invokeWriteAndFlush方法中:

private void invokeWriteAndFlush(Object msg, ChannelPromise promise) {
    if (invokeHandler()) {
        //写入
        invokeWrite0(msg, promise);
        //刷新
        invokeFlush0();
    } else {
        writeAndFlush(msg, promise);
    }
}

我们再看invokeFlush0方法

private void invokeFlush0() {
    try {
        ((ChannelOutboundHandler) handler()).flush(this);
    } catch (Throwable t) {
        notifyHandlerException(t);
    }
}

同样, 这里会调用当前handler的flush方法, 如果当前handler的flush方法是继续传播flush事件, 则flush事件会继续往下传播, 直到最后会调用head节点的flush方法, 如果我们熟悉pipeline的话, 对这里的逻辑不会陌生

跟到HeadContext的flush方法中:

public void flush(ChannelHandlerContext ctx) throws Exception {
    unsafe.flush();
}

这里同样, 会通过当前channel的unsafe对象通过调用flush方法将缓存的数据刷新到channel中, 有关刷新的逻辑, 我们会在以后的小节进行剖析

以上就是writeAndFlush的相关逻辑, 整体上比较简单, 熟悉pipeline的同学应该很容易理解

更多关于Netty分布式编码器及写数据事件的资料请关注我们其它相关文章!

(0)

相关推荐

  • Netty分布式解码器读取数据不完整的逻辑剖析

    目录 概述 第一节: ByteToMessageDecoder 我们看他的定义 我们看其channelRead方法 我们看cumulator属性 我们回到channRead方法中 概述 在我们上一个章节遗留过一个问题, 就是如果Server在读取客户端的数据的时候, 如果一次读取不完整, 就触发channelRead事件, 那么Netty是如何处理这类问题的, 在这一章中, 会对此做详细剖析 之前的章节我们学习过pipeline, 事件在pipeline中传递, handler可以将事件截取并对

  • Netty分布式行解码器逻辑源码解析

    目录 行解码器LineBasedFrameDecoder 首先看其参数 我们跟到重载的decode方法中 我们看findEndOfLine(buffer)方法 这一小节了解下行解码器LineBasedFrameDecoder, 行解码器的功能是一个字节流, 以\r\n或者直接以\n结尾进行解码, 也就是以换行符为分隔进行解析 同样, 这个解码器也继承了ByteToMessageDecoder 行解码器LineBasedFrameDecoder 首先看其参数 //数据包的最大长度, 超过该长度会进

  • Netty分布式ByteBuf使用的回收逻辑剖析

    目录 ByteBuf回收 这里调用了release0, 跟进去 我们首先分析free方法 我们跟到cache中 回到add方法中 我们回到free方法中 前文传送门:ByteBuf使用subPage级别内存分配 ByteBuf回收 之前的章节我们提到过, 堆外内存是不受jvm垃圾回收机制控制的, 所以我们分配一块堆外内存进行ByteBuf操作时, 使用完毕要对对象进行回收, 这一小节, 就以PooledUnsafeDirectByteBuf为例讲解有关内存分配的相关逻辑 PooledUnsafe

  • Netty分布式ByteBuf使用SocketChannel读取数据过程剖析

    目录 Server读取数据的流程 我们首先看NioEventLoop的processSelectedKey方法 这里会走到DefaultChannelConfig的getAllocator方法中 我们跟到static块中 回到NioByteUnsafe的read()方法中 我们跟进recvBufAllocHandle 继续看doReadBytes方法 跟到record方法中 章节总结 我们第三章分析过客户端接入的流程, 这一小节带大家剖析客户端发送数据, Server读取数据的流程: 首先温馨提

  • Netty分布式固定长度解码器实现原理剖析

    固定长度解码器 上一小节:解码器读取数据不完整的逻辑剖析 我们了解到, 解码器需要继承ByteToMessageDecoder, 并重写decode方法, 将解析出来的对象放入集合中集合, ByteToMessageDecoder中可以将解析出来的对象向下进行传播, 这一小节带大家剖析一个最简单的解码器FixedLengthFrameDecoder, 从它入手了解码器的相关原理 FixedLengthFrameDecoder是一个固定长度的解码器, 功能就是根据固定长度, 截取固定大小的字节数进

  • Netty分布式ByteBuf使用subPage级别内存分配剖析

    目录 subPage级别内存分配 我们其中是在构造方法中初始化的, 看构造方法中其初始化代码 在构造方法中创建完毕之后, 会通过循环为其赋值 这里通过normCapacity拿到tableIdx 跟到allocate(normCapacity)方法中 我们跟到PoolSubpage的构造方法中 我们跟到addToPool(head)中 我们跟到allocate()方法中 我们继续跟进findNextAvail方法 我们回到allocate()方法中 我们跟到initBuf方法中 回到initBu

  • Netty分布式编码器及写数据事件处理使用场景

    目录 概述 编码器 第一节: writeAndFlush的事件传播 我们看一个最简单的使用的场景 我们跟到writeAndFlush方法中 我们跟到invokeWriteAndFlush中 我们再看invokeFlush0方法 概述 上一小章我们介绍了解码器, 这一章我们介绍编码器 其实编码器和解码器比较类似, 编码器也是一个handler, 并且属于outbounfHandle, 就是将准备发出去的数据进行拦截, 拦截之后进行相应的处理之后再次进发送处理, 如果理解了解码器, 那么编码器的相关

  • Netty分布式编码器写buffer队列逻辑剖析

    目录 写buffer队列 我们跟到AbstractUnsafe的write方法中 回到write方法中 我们跟到setUnwritable(invokeLater)方法中 前文传送门:抽象编码器MessageToByteEncoder 写buffer队列 之前的小节我们介绍过, writeAndFlush方法其实最终会调用write和flush方法 write方法最终会传递到head节点, 调用HeadContext的write方法: public void write(ChannelHandl

  • Netty分布式抽象编码器MessageToByteEncoder逻辑分析

    目录 MessageToByteEncoder 首先看MessageToByteEncoder的类声明 跟到allocateBuffer方法中 前文回顾:Netty分布式编码器及写数据事件处理 MessageToByteEncoder 同解码器一样, 编码器中也有一个抽象类叫MessageToByteEncoder, 其中定义了编码器的骨架方法, 具体编码逻辑交给子类实现 解码器同样也是个handler, 将写出的数据进行截取处理, 我们在学习pipeline中我们知道, 写数据的时候会传递wr

  • Netty分布式pipeline管道创建方法跟踪解析

    目录 概述 pipeline的创建 上一章节回顾:Netty分布式源码分析监听读事件 概述 pipeline, 顾名思义, 就是管道的意思, 在netty中, 事件在pipeline中传输, 用户可以中断事件, 添加自己的事件处理逻辑, 可以直接将事件中断不再往下传输, 同样可以改变管道的流向, 传递其他事件.这里有点类似于Spring的AOP, 但是比AOP实现起来简单的多 事件通常分为两种, 一是inBound事件, 另一种是outBound事件, inBound事件, 顾名思义, 就是从另

  • Netty分布式Future与Promise执行回调相关逻辑剖析

    目录 Future和Promise执行回调 首先我们看一段写在handler中的业务代码 这里关注newPromise()方法, 跟进去 我们继续跟write方法 跟进tryFailure方法 跟到addMessage方法中 最后跟到AbstractUnsafe的flush方法 我们跟到remove()方法中 再跟到trySuccess方法中 我们看用户代码 跟到addListener0方法中 回到addListener0方法中 跟到isDone方法中 跟到notifyListeners()方法

  • Netty分布式server启动流程Nio创建源码分析

    目录 NioServerSocketChannel创建 继承关系 绑定端口 端口封装成socket地址对象 跟进initAndRegister()方法 创建channel 父类的构造方法 将jdk的channel设置为非阻塞模式 前文传送门 Netty分布式Server启动流程服务端初始化源码分析 NioServerSocketChannel创建 我们如果熟悉Nio, 则对channel的概念则不会陌生, channel在相当于一个通道, 用于数据的传输 Netty将jdk的channel进行了

  • Netty分布式pipeline传播inbound事件源码分析

    前一小结回顾:pipeline管道Handler删除 传播inbound事件 有关于inbound事件, 在概述中做过简单的介绍, 就是以自己为基准, 流向自己的事件, 比如最常见的channelRead事件, 就是对方发来数据流的所触发的事件, 己方要对这些数据进行处理, 这一小节, 以激活channelRead为例讲解有关inbound事件的处理流程 在业务代码中, 我们自己的handler往往会通过重写channelRead方法来处理对方发来的数据, 那么对方发来的数据是如何走到chann

  • Netty分布式pipeline管道传播outBound事件源码解析

    目录 outbound事件传输流程 这里我们同样给出两种写法 跟到其write方法中: 跟到findContextOutbound中 回到write方法: 继续跟invokeWrite0 我们跟到HeadContext的write方法中 了解了inbound事件的传播过程, 对于学习outbound事件传输的流程, 也不会太困难 outbound事件传输流程 在我们业务代码中, 有可能使用wirte方法往写数据: public void channelActive(ChannelHandlerC

随机推荐