详解非极大值抑制算法之Python实现

一、概述

这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口。

NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪、数据挖掘、3D重建、目标识别以及纹理分析等。

二、NMS 在目标检测中的应用

2.1、人脸检测框重叠例子

我们的目的就是要去除冗余的检测框,保留最好的一个.

有多种方式可以解决这个问题,Triggs et al. 建议使用Mean-Shift 算法,利用bbox的坐标和当前图片尺度的对数来检测bbox的多种模式.但效果可能并不如使用强分类器结合NMS的效果好.

2.2、目标检测 pipline

产生proposal后使用分类网络给出每个框的每类置信度,使用回归网络修正位置,最终应用NMS.

三、NMS 原理

对于Bounding Box的列表B及其对应的置信度S,采用下面的计算方式.选择具有最大score的检测框M,将其从B集合中移除并加入到最终的检测结果D中.通常将B中剩余检测框中与M的IoU大于阈值Nt的框从B中移除.重复这个过程,直到B为空.

3.1、重叠率(重叠区域面积比例IOU)阈值

常用的阈值是 0.3 ~ 0.5.

其中用到排序,可以按照右下角的坐标排序或者面积排序,也可以是通过SVM等分类器得到的得分或概率,R-CNN中就是按得分进行的排序.

就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制的方法是:先假设有6个矩形框,根据分类器的类别分类概率做排序,假设从小到大属于车辆的概率 分别为A、B、C、D、E、F。

(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;

(2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。

(3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框。

就这样一直重复,找到所有被保留下来的矩形框。

3.2、代码示例

在R-CNN中使用了NMS来确定最终的bbox,其对每个候选框送入分类器,根据分类器的类别分类概率做排序(论文中称为greedy-NMS).但其实也可以在分类之前运用简单版本的NMS来去除一些框.

python实现的单类别nms:py_cpu_nms.py.

def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
 #x1、y1、x2、y2、以及score赋值
 x1 = dets[:, 0]
 y1 = dets[:, 1]
 x2 = dets[:, 2]
 y2 = dets[:, 3]
 scores = dets[:, 4]
 #每一个检测框的面积
 areas = (x2 - x1 + 1) * (y2 - y1 + 1)
 #按照score置信度降序排序
 order = scores.argsort()[::-1]
 keep = [] #保留的结果框集合
 while order.size > 0:
 i = order[0]
 keep.append(i) #保留该类剩余box中得分最高的一个
 #得到相交区域,左上及右下
 xx1 = np.maximum(x1[i], x1[order[1:]])
 yy1 = np.maximum(y1[i], y1[order[1:]])
 xx2 = np.minimum(x2[i], x2[order[1:]])
 yy2 = np.minimum(y2[i], y2[order[1:]])
 #计算相交的面积,不重叠时面积为0
 w = np.maximum(0.0, xx2 - xx1 + 1)
 h = np.maximum(0.0, yy2 - yy1 + 1)
 inter = w * h
 #计算IoU:重叠面积 /(面积1+面积2-重叠面积)
 ovr = inter / (areas[i] + areas[order[1:]] - inter)
 #保留IoU小于阈值的box
 inds = np.where(ovr <= thresh)[0]
 order = order[inds + 1] #因为ovr数组的长度比order数组少一个,所以这里要将所有下标后移一位
 return keep

Faster R-CNN的MATLAB实现与python版实现一致,代码在这里:nms.m.另外,nms_multiclass.m是多类别nms,加了一层for循环对每类进行nms而已.

四、NMS loss

值的注意的是对多类别检测任务,如果对每类分别进行NMS,那么当检测结果中包含两个被分到不同类别的目标且其IoU较大时,会得到不可接受的结果。如下图所示:

一种改进方式便是在损失函数中加入一部分NMS损失。NMS损失可以定义为与分类损失相同:

即真实列别u对应的log损失,p是C个类别的预测概率。实际相当于增加分类误差。
参考论文《Rotated Region Based CNN for Ship Detection》(IEEE2017会议论文)的Multi-task for NMS部分。

五、Soft-NMS

上述NMS算法的一个主要问题是当两个ground truth的目标的确重叠度很高时,NMS会将具有较低置信度的框去掉(置信度改成0),参见下图所示.

论文:《Improving Object Detection With One Line of Code
改进之处:

改进方法在于将置信度改为IoU的函数:f(IoU),具有较低的值而不至于从排序列表中删去.

1.线性函数

函数值不连续,在某一点的值发生跳跃.

2.高斯函数

时间复杂度同传统的greedy-NMS,为

5.1、python代码实现

ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih)
ov = iw * ih / ua #iou between max box and detection box
if method == 1: # linear
	if ov > Nt:
		weight = 1 - ov
	else:
		weight = 1
elif method == 2: # gaussian
	weight = np.exp(-(ov * ov)/sigma)
else: # original NMS
	if ov > Nt:
		weight = 0
	else:
		weight = 1
# re-scoring 修改置信度
# boxes[pos, 4] = weight*boxes[pos, 4]

5.2、Caffe C++ 版实现

makefile/frcnn

效果

在基于proposal方法的模型结果上应用比较好,检测效果提升:

在R-FCN以及Faster-RCNN模型中的测试阶段运用Soft-NMS,在MS-COCO数据集上mAP@[0.5:0.95]能够获得大约1%的提升(详见这里). 如果应用到训练阶段的proposal选取过程理论上也能获得提升. 在自己的实验中发现确实对易重叠的目标类型有提高(目标不一定真的有像素上的重叠,切斜的目标的矩形边框会有较大的重叠).
而在SSD,YOLO等非proposal方法中没有提升.

六、其它应用

边缘检测:Canny算子中的非极大值抑制是沿着梯度方向进行的,即是否为梯度方向上的极值点;

特征点检测:在角点检测等场景下说的非极大值抑制,则是检测中心点处的值是否是某一个邻域内的最大值.

以上就是详解非极大值抑制算法之Python实现的详细内容,更多关于非极大值抑制 Python实现的资料请关注我们其它相关文章!

(0)

相关推荐

  • python动态规划算法实例详解

    如果大家对这个生僻的术语不理解的话,那就先听小编给大家说个现实生活中的实际案例吧,虽然现在手机是相当的便捷,还可以付款,但是最初的时候,我们经常会使用硬币,其中,我们如果遇到手中有很多五毛或者1块钱硬币,要怎么凑出来5元钱呢?这么一个过程也可以称之为动态规划算法,下面就来看下详细内容吧. 从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2 ( n = 1,2 fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数列的第 n 项 代码如下: #

  • python 图像增强算法实现详解

    使用python编写了共六种图像增强算法: 1)基于直方图均衡化 2)基于拉普拉斯算子 3)基于对数变换 4)基于伽马变换 5)限制对比度自适应直方图均衡化:CLAHE 6)retinex-SSR 7)retinex-MSR其中,6和7属于同一种下的变化. 将每种方法编写成一个函数,封装,可以直接在主函数中调用. 采用同一幅图进行效果对比. 图像增强的效果为: 直方图均衡化:对比度较低的图像适合使用直方图均衡化方法来增强图像细节 拉普拉斯算子可以增强局部的图像对比度 log对数变换对于整体对比度

  • python 实现Harris角点检测算法

    算法流程: 将图像转换为灰度图像 利用Sobel滤波器求出 海森矩阵 (Hessian matrix) : 将高斯滤波器分别作用于Ix².Iy².IxIy 计算每个像素的 R= det(H) - k(trace(H))².det(H)表示矩阵H的行列式,trace表示矩阵H的迹.通常k的取值范围为[0.04,0.16]. 满足 R>=max(R) * th 的像素点即为角点.th常取0.1. Harris算法实现: import cv2 as cv import numpy as np impo

  • python 实现非极大值抑制算法(Non-maximum suppression, NMS)

    NMS 算法在目标检测,目标定位领域有较广泛的应用. 算法原理 非极大值抑制算法(Non-maximum suppression, NMS)的本质是搜索局部极大值,抑制非极大值元素. 算法的作用 当算法对一个目标产生了多个候选框的时候,选择 score 最高的框,并抑制其他对于改目标的候选框 适用场景 一幅图中有多个目标(如果只有一个目标,那么直接取 score 最高的候选框即可). 算法的输入 算法对一幅图产生的所有的候选框,以及每个框对应的 score (可以用一个 5 维数组 dets 表

  • 详解非极大值抑制算法之Python实现

    一.概述 这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数.但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况.这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口. NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪.数据挖掘

  • 详解小白之KMP算法及python实现

    在看子串匹配问题的时候,书上的关于KMP的算法的介绍总是理解不了.看了一遍代码总是很快的忘掉,后来决定好好分解一下KMP算法,算是给自己加深印象. 在将KMP字串匹配问题的时候,我们先来回顾一下字串匹配的暴力解法: 假设字符串str为: "abcgbabcdh",  字串substr为: "abcd" 从第一个字符开始比较,显然两个字符串的第一个字符相等('a'=='a'),然后比较第二个字符也相等('b'=='b'),继续下去,我们发现第4个字符不相等了('g'!

  • Python 非极大值抑制(NMS)的四种实现详解

    目录 一.  几点说明 1. 简单说明Cython: 2. 简单介绍NMS: 二.  四种方法实现 1. 纯python实现:nms_py.py 2.直接利用Cython模块编译:nms_py1.pyx 3. 更改变量定义后再利用Cython模块编译:nms_py2.pyx 4. 在方法3的基础上利用GPU:gpu_nms.pyx 方法1:纯python语言实现:简介方便.速度慢 方法2:直接利用Cython模块编译 方法3:先将全部变量定义为静态类型,再利用Cython模块编译 方法4:在方法

  • 详解Java实现分治算法

    目录 一.前言 二.分治算法介绍 三.分治算法经典问题 3.1.二分搜索 3.2.快速排序 3.3.归并排序(逆序数) 3.4.最大子序列和 3.5.最近点对 四.结语 一.前言 在学习分治算法之前,问你一个问题,相信大家小时候都有存钱罐的经历,父母亲人如果给钱都会往自己的宝藏中存钱,我们每隔一段时间都会清点清点钱.但是一堆钱让你处理起来你可能觉得很复杂,因为数据相对于大脑有点庞大了,并且很容易算错,你可能会将它先分成几个小份算,然后再叠加起来计算总和就获得这堆钱的总数了 当然如果你觉得各个部分

  • 详解C++实现匈牙利算法

    目录 一.匈牙利算法介绍 二.最大匹配问题 三.最小点覆盖问题 四.匈牙利算法的应用 4.1.(洛谷P1129) [ZJOI2007]矩阵游戏 4.2.(vijos1204) CoVH之柯南开锁 4.3.(TYVJ P1035) 棋盘覆盖 一.匈牙利算法介绍 匈牙利算法(Hungarian algorithm)主要用于解决一些与二分图匹配有关的问题,所以我们先来了解一下二分图. 二分图(Bipartite graph)是一类特殊的图,它可以被划分为两个部分,每个部分内的点互不相连.下图是典型的二

  • 详解利用上下文管理器扩展Python计时器

    目录 一个 Python 定时器上下文管理器 了解 Python 中的上下文管理器 理解并使用 contextlib 创建 Python 计时器上下文管理器 使用 Python 定时器上下文管理器 写在最后 上文中,我们一起学习了手把手教你实现一个 Python 计时器.本文中,云朵君将和大家一起了解什么是上下文管理器 和 Python 的 with 语句,以及如何完成自定义.然后扩展 Timer 以便它也可以用作上下文管理器.最后,使用 Timer 作为上下文管理器如何简化我们自己的代码. 上

  • 图文详解梯度下降算法的原理及Python实现

    目录 1.引例 2.数值解法 3.梯度下降算法 4.代码实战:Logistic回归 1.引例 给定如图所示的某个函数,如何通过计算机算法编程求f(x)min? 2.数值解法 传统方法是数值解法,如图所示 按照以下步骤迭代循环直至最优: ① 任意给定一个初值x0: ② 随机生成增量方向,结合步长生成Δx: ③ 计算比较f(x0)与f(x0+Δx)的大小,若f(x0+Δx)<f(x0)则更新位置,否则重新生成Δx: ④ 重复②③直至收敛到最优f(x)min. 数值解法最大的优点是编程简明,但缺陷也很

  • 详解vue3.0 diff算法的使用(超详细)

    前言:随之vue3.0beta版本的发布,vue3.0正式版本相信不久就会与我们相遇.尤玉溪在直播中也说了vue3.0的新特性typescript强烈支持,proxy响应式原理,重新虚拟dom,优化diff算法性能提升等等.小编在这里仔细研究了vue3.0beta版本diff算法的源码,并希望把其中的细节和奥妙和大家一起分享. 首先我们来思考一些大中厂面试中,很容易问到的问题: 1 什么时候用到diff算法,diff算法作用域在哪里? 2 diff算法是怎么运作的,到底有什么作用? 3 在v-f

  • 详解Vue2的diff算法

    前言 双端比较算法是vue2.x采用的diff算法,本篇文章只是对双端比较算法粗略的过程进行了一下分析,具体细节还是得Vue源码,Vue的源码在这 过程 假设当前有两个数组arr1和arr2 let arr1 = [1,2,3,4,5] let arr2 = [4,3,5,1,2] 那么其过程有五步 arr1[0] 和 arr2[0]比较 arr1[ arr1.length-1 ] 和 arr2[ arr2.length-1 ] 比较 arr1[0] 和 arr2[ arr2.length-1

随机推荐