pytorch神经网络从零开始实现多层感知机

目录
  • 初始化模型参数
  • 激活函数
  • 模型
  • 损失函数
  • 训练

我们已经在数学上描述了多层感知机,现在让我们尝试自己实现一个多层感知机。为了与我们之前使用softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集。

import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

Fashion-MNIST中的每个图像由 28 × 28 = 784个灰度图像值组成。所有图像共分为10个类别。忽略像素之间的空间结构,我们可以将每个图像视为784个输入特征和10个类的简单分类数据集。
首先,我们将实现一个具有单隐藏层的多层感知机,它包含256个隐藏单元。注意我们可以将这两个量都视为超参数。通常,我们选择2的若干次幂作为层的宽度。
我们用几个张量来表示我们的参数。注意,对于每一层我们都需要记录一个权重矩阵和一个偏置向量。跟以前一样,我们要为这些参数的损失梯度分配内存。

num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(
num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]

激活函数

为了确保我们知道一切是如何工作的,我们将使用最大值函数自己实现ReLU激活函数,而不是直接调用内置的relu函数。

def relu(X):
	a = torch.zeros_like(X)
	return torch.max(X, a)

模型

因为我们忽略了空间结构,所示我们使用reshape将每个二维图像转换为一个长度为num_inputs的向量。我们只需几行代码就可以实现我们的模型。

def net(X):
	X = X.reshape((-1, num_inputs))
	H = relu(X@W1 + b1)    # 这里“@”代表矩阵乘法
	return (H@W2 + b2)

损失函数

为了确保数值的稳定性,同时由于我们已经从零实现过softmax函数,因此在这里我们直接使用高级API中的内置函数来计算softmax和交叉熵损失。

loss = nn.CrossEntropyLoss()

训练

幸运的是,多层感知机的训练过程与softmax回归的训练过程完全相同。可以直接调用d2l包的train_ch3函数,将迭代周期设置为10,并将学习率设置为0.1。

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

为了对学习到的模型进行评估,我们将在一些 测试数据上应用这个模型。

d2l.predict_ch3(net, test_iter)

以上就是pytorch神经网络从零开始实现多层感知机的详细内容,更多关于pytorch神经网络多层感知机的资料请关注我们其它相关文章!

(0)

相关推荐

  • python实现多层感知器

    写了个多层感知器,用bp梯度下降更新,拟合正弦曲线,效果凑合. # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def sigmod(z): return 1.0 / (1.0 + np.exp(-z)) class mlp(object): def __init__(self, lr=0.1, lda=0.0, te=1e-5, epoch=100, size=None): self.lear

  • python实现多层感知器MLP(基于双月数据集)

    本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下 1.加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): i

  • python实现感知机模型的示例

    from sklearn.linear_model import Perceptron import argparse #一个好用的参数传递模型 import numpy as np from sklearn.datasets import load_iris #数据集 from sklearn.model_selection import train_test_split #训练集和测试集分割 from loguru import logger #日志输出,不清楚用法 #python is a

  • 使用pytorch实现可视化中间层的结果

    摘要 一直比较想知道图片经过卷积之后中间层的结果,于是使用pytorch写了一个脚本查看,先看效果 这是原图,随便从网上下载的一张大概224*224大小的图片,如下 网络介绍 我们使用的VGG16,包含RULE层总共有30层可以可视化的结果,我们把这30层分别保存在30个文件夹中,每个文件中根据特征的大小保存了64~128张图片 结果如下: 原图大小为224224,经过第一层后大小为64224*224,下面是第一层可视化的结果,总共有64张这样的图片: 下面看看第六层的结果 这层的输出大小是 1

  • pytorch神经网络从零开始实现多层感知机

    目录 初始化模型参数 激活函数 模型 损失函数 训练 我们已经在数学上描述了多层感知机,现在让我们尝试自己实现一个多层感知机.为了与我们之前使用softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集. import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnis

  • Python深度学习pytorch神经网络多层感知机简洁实现

    我们可以通过高级API更简洁地实现多层感知机. import torch from torch import nn from d2l import torch as d2l 模型 与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层.第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数.第二层是输出层. net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 1

  • pyTorch深度学习多层感知机的实现

    目录 激活函数 多层感知机的PyTorch实现 激活函数 前两节实现的传送门 pyTorch深度学习softmax实现解析 pyTorch深入学习梯度和Linear Regression实现析 前两节实现的linear model 和 softmax model 是单层神经网络,只包含一个输入层和一个输出层,因为输入层不对数据进行transformation,所以只算一层输出层. 多层感知机(mutilayer preceptron)加入了隐藏层,将神经网络的层级加深,因为线性层的串联结果还是线

  • TensorFlow神经网络创建多层感知机MNIST数据集

    前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率. 前文传送门: TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集 现在建含一个隐层的神经网络模型(多层感知机). import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True)

  • Python深度学习理解pytorch神经网络批量归一化

    目录 训练深层网络 为什么要批量归一化层呢? 批量归一化层 全连接层 卷积层 预测过程中的批量归一化 使用批量归一化层的LeNet 简明实现 争议 训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手.在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度.在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络. 训练深层网络 为什么要批量归一化层呢? 让我们回顾一下训练神经网络时出现的

  • Python深度学习pytorch神经网络Dropout应用详解解

    目录 扰动的鲁棒性 实践中的dropout 简洁实现 扰动的鲁棒性 在之前我们讨论权重衰减(L2​正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量.简单性的另一个有用角度是平滑性,即函数不应该对其输入的微笑变化敏感.例如,当我们对图像进行分类时,我们预计向像素添加一些随机噪声应该是基本无影响的. dropout在正向传播过程中,计算每一内部层同时注入噪声,这已经成为训练神经网络的标准技术.这种方法之所以被称为dropout,因为我们从表面上看是在训练过程中丢弃(drop out)一些

  • TensorFlow实现MLP多层感知机模型

    一.多层感知机简介 Softmax回归可以算是多分类问题logistic回归,它和神经网络的最大区别是没有隐含层.理论上只要隐含节点足够多,即时只有一个隐含层的神经网络也可以拟合任意函数,同时隐含层越多,越容易拟合复杂结构.为了拟合复杂函数需要的隐含节点的数目,基本上随着隐含层的数量增多呈指数下降的趋势,也就是说层数越多,神经网络所需要的隐含节点可以越少.层数越深,概念越抽象,需要背诵的知识点就越少.在实际应用中,深层神经网络会遇到许多困难,如过拟合.参数调试.梯度弥散等. 过拟合是机器学习中的

  • Python深度学习pytorch神经网络填充和步幅的理解

    目录 填充 步幅 上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为 2 × 2 2\times2 2×2.从上图可看出卷积的输出形状取决于输入形状和卷积核的形状. 填充 以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素. 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0). 例如,在上图中我们将 3 × 3 3\times3 3×3输入填充到 5 × 5 5\times5 5×5,那么它的输出就增加为 4 × 4

  • Python深度学习pytorch神经网络多输入多输出通道

    目录 多输入通道 多输出通道 1 × 1 1\times1 1×1卷积层 虽然每个图像具有多个通道和多层卷积层.例如彩色图像具有标准的RGB通道来指示红.绿和蓝.但是到目前为止,我们仅展示了单个输入和单个输出通道的简化例子.这使得我们可以将输入.卷积核和输出看作二维张量. 当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量.例如,每个RGB输入图像具有 3 × h × w 3\times{h}\times{w} 3×h×w的形状.我们将这个大小为3的轴称为通道(channel)维度.在本节

  • Python机器学习多层感知机原理解析

    目录 隐藏层 从线性到非线性 激活函数 ReLU函数 sigmoid函数 tanh函数 隐藏层 我们在前面描述了仿射变换,它是一个带有偏置项的线性变换.首先,回想下之前下图中所示的softmax回归的模型结构.该模型通过单个仿射变换将我们的输入直接映射到输出,然后进行softmax操作.如果我们的标签通过仿射变换后确实与我们的输入数据相关,那么这种方法就足够了.但是,仿射变换中的线性是一个很强的假设. 我们的数据可能会有一种表示,这种表示会考虑到我们的特征之间的相关交互作用.在此表示的基础上建立

随机推荐