c# 实现雪花分形的示例
C#都没人用了吗,网上想找个现成的雪花分形代码,都没找见,有C++,有python,有java的,就没有C#的,自己试试写一个吧。
public partial class Form1 : Form { public Form1() { InitializeComponent(); } private void Form1_Paint(object sender, PaintEventArgs e) { DrawKochSnow(e.Graphics); } private void ZheXian(Point p1, Point p2, Graphics g) // 4条基本线段组成的折线 { Point p3 = new Point(p1.X + (p2.X - p1.X) / 3, p1.Y + (p2.Y - p1.Y) / 3); // 三等分点坐标 Point p4 = new Point(p1.X + (p2.X - p1.X) * 2 / 3, p1.Y + (p2.Y - p1.Y) * 2 / 3); // 三等分点坐标 Point p4XD3 = new Point(p4.X - p3.X, p4.Y - p3.Y); // p4相对于p3点的坐标 //int x = (int)(p4XD3.X * Math.Cos(Math.PI / 3) - p4XD3.Y * Math.Sin(Math.PI / 3)); //int y = (int)(p4XD3.X * Math.Sin(Math.PI / 3) + p4XD3.Y * Math.Cos(Math.PI / 3)); // 注意计算机的屏幕垂直坐标和数学上相反,所以数学上逆时针旋转在计算机上相当于顺时针旋转 int x = (int)Math.Round(p4XD3.X * Math.Cos(Math.PI / 3) + p4XD3.Y * Math.Sin(Math.PI / 3)); int y = (int)Math.Round(p4XD3.Y * Math.Cos(Math.PI / 3) - p4XD3.X * Math.Sin(Math.PI / 3)); Point p5XD3 = new Point(x, y); // 凸起点p5相对于p3点的坐标 Point p5 = new Point(p3.X + x, p3.Y + y); // p5相对于原点的坐标 Pen pen = new Pen(Brushes.Black, 1); double length = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2)) / 3; //Console.WriteLine(length); if (length > 20) // 通过最终线段长度可以控制迭代 { ZheXian(p1, p3, g); ZheXian(p3, p5, g); ZheXian(p5, p4, g); ZheXian(p4, p2, g); } else { g.DrawLine(pen, p1, p3); g.DrawLine(pen, p3, p5); g.DrawLine(pen, p5, p4); g.DrawLine(pen, p4, p2); } } private void DrawKochSnow(Graphics g) // 科赫雪花(瑞典人科赫于1904年提出了著名的“雪花”曲线) { int length = 480; Point origin = new Point(this.ClientSize.Width / 2, this.ClientSize.Height / 2); g.FillEllipse(Brushes.Blue, new RectangleF(origin, new Size(10, 10))); // 计算三角形的顶点让其中心和窗体的中心重合 Point A = new Point(origin.X - length / 2, (int)(origin.Y + length / (2 * Math.Sqrt(3)))); Point B = new Point(origin.X, (int)(origin.Y - length / Math.Sqrt(3))); Point C = new Point(origin.X + length / 2, (int)(origin.Y + length / (2 * Math.Sqrt(3)))); ZheXian(A, B, g); ZheXian(B, C, g); ZheXian(C, A, g); } }
以上就是c# 实现雪花分形的示例的详细内容,更多关于c# 雪花分形的资料请关注我们其它相关文章!
赞 (0)