python中heapq堆排算法的实现

目录
  • 一、创建堆
  • 二、访问堆内容
  • 三、获取堆最大或最小值
  • 四、heapq应用

一、创建堆

heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构

import heapq
# 第一种
"""
函数定义:
heapq.heappush(heap, item)
- Push the value item onto the heap, maintaining the heap invariant.
heapq.heappop(heap)
- Pop and return the smallest item from the heap, maintaining the heap invariant.
If the heap is empty, IndexError is raised. To access the smallest item without popping it, use heap[0].
"""
nums = [2, 3, 5, 1, 54, 23, 132]
heap = []
for num in nums:
heapq.heappush(heap, num) # 加入堆
print(heap[0]) # 如果只是想获取最小值而不是弹出,使用heap[0]
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
# 第二种
nums = [2, 3, 5, 1, 54, 23, 132]
heapq.heapify(nums)
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]

heapq 模块还有一个​​heapq.merge(*iterables)​​ 方法,用于合并多个排序后的序列成一个排序后的序列, 返回排序后的值的迭代器。

类似于​​sorted(itertools.chain(*iterables))​​,但返回的是可迭代的。

"""
函数定义:
heapq.merge(*iterables)
- Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple log files). Returns an
iterator over the sorted values.
- Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory all at once, and assumes
that each of the input streams is already sorted (smallest to largest).
"""
import heapq
num1 = [32, 3, 5, 34, 54, 23, 132]
num2 = [23, 2, 12, 656, 324, 23, 54]
num1 = sorted(num1)
num2 = sorted(num2)

res = heapq.merge(num1, num2)
print(list(res))

二、访问堆内容

堆创建好后,可以通过`heapq.heappop() 函数弹出堆中最小值。

import heapq
nums = [2, 43, 45, 23, 12]
heapq.heapify(nums)
print(heapq.heappop(nums))
# out: 2
# 如果需要所有堆排序后的元素
result = [heapq.heappop(nums) for _ in range(len(nums))]
print(result)
# out: [12, 23, 43, 45]

如果需要删除堆中最小元素并加入一个元素,可以使用​​heapq.heaprepalce()​​ 函数

import heapq
nums = [1, 2, 4, 5, 3]
heapq.heapify(nums)
heapq.heapreplace(nums, 23)
print([heapq.heappop(nums) for _ in range(len(nums))])
# out: [2, 3, 4, 5, 23]

三、获取堆最大或最小值

如果需要获取堆中最大或最小的范围值,则可以使用​​heapq.nlargest()​​​ 或​​heapq.nsmallest()​​ 函数

"""
函数定义:
heapq.nlargest(n, iterable[, key])¶
- Return a list with the n largest elements from the dataset defined by iterable.
- key if provided, specifies a function of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
- Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
"""
import heapq

nums = [1, 3, 4, 5, 2]
print(heapq.nlargest(3, nums))
print(heapq.nsmallest(3, nums))

"""
输出:
[5, 4, 3]
[1, 2, 3]
"""

这两个函数还接受一个key参数,用于dict或其他数据结构类型使用

import heapq
from pprint import pprint
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
pprint(cheap)
pprint(expensive)

"""
输出:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50},
{'name': 'ACME', 'price': 115.65, 'shares': 75},
{'name': 'IBM', 'price': 91.1, 'shares': 100}]
"""

四、heapq应用

实现heap堆排序算法:

>>> def heapsort(iterable):
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

该算法和​​sorted(iterable)​​ 类似,但是它是不稳定的。

堆的值可以是元组类型,可以实现对带权值的元素进行排序。

>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')

到此这篇关于python中heapq堆排算法的实现的文章就介绍到这了,更多相关python heapq 堆内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python中的heapq模块源码详析

    起步 这是一个相当实用的内置模块,但是很多人竟然不知道他的存在--笔者也是今天偶然看到的,哎--尽管如此,还是改变不了这个模块好用的事实 heapq 模块实现了适用于Python列表的最小堆排序算法. 堆是一个树状的数据结构,其中的子节点都与父母排序顺序关系.因为堆排序中的树是满二叉树,因此可以用列表来表示树的结构,使得元素 N 的子元素位于 2N + 1 和 2N + 2 的位置(对于从零开始的索引). 本文内容将分为三个部分,第一个部分简单介绍 heapq 模块的使用:第二部分回顾堆排序算法

  • Python heapq使用详解及实例代码

     Python heapq 详解 Python有一个内置的模块,heapq标准的封装了最小堆的算法实现.下面看两个不错的应用. 小顶堆(求TopK大) 话说需求是这样的: 定长的序列,求出TopK大的数据. import heapq import random class TopkHeap(object): def __init__(self, k): self.k = k self.data = [] def Push(self, elem): if len(self.data) < self

  • 详解python之heapq模块及排序操作

    说到排序,很多人可能第一想到的就是sorted,但是你可能不知道python中其实还有还就中方法哟,并且好多种场景下效率都会比sorted高.那么接下来我就依次来介绍我所知道的排序操作. sorted(iterable, *, key=None, reverse=False) list1=[1,6,4,3,9,5] list2=['12','a6','4','c34','b9','5'] print(sorted(list1)) #[1, 3, 4, 5, 6, 9] print(sorted(

  • Python heapq库案例详解

    Python heapq heapq 库是 Python 标准库之一,提供了构建小顶堆的方法和一些对小顶堆的基本操作方法(如入堆,出堆等),可以用于实现堆排序算法. 堆是一种基本的数据结构,堆的结构是一棵完全二叉树,并且满足堆积的性质:每个节点(叶节点除外)的值都大于等于(或都小于等于)它的子节点. 堆结构分为大顶堆和小顶堆,在 heapq 中使用的是小顶堆: 大顶堆:每个节点(叶节点除外)的值都大于等于其子节点的值,根节点的值是所有节点中最大的. 小顶堆:每个节点(叶节点除外)的值都小于等于其

  • Python利用heapq实现一个优先级队列的方法

    实现一个优先级队列,每次pop的元素要是优先级高的元素,由于heapq.heapify(list)默认构建一个小顶堆,因此要将priority变为相反数再push,代码如下: import heapq class PriorityQueue(object): """实现一个优先级队列,每次pop优先级最高的元素""" def __init__(self): self._queue = [] self._index = 0 def push(sel

  • 详解Python中heapq模块的用法

    heapq 模块提供了堆算法.heapq是一种子节点和父节点排序的树形数据结构.这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2].为了比较不存在的元素被人为是无限大的.heap最小的元素总是[0]. 打印 heapq 类型 import math import random from cStringIO import StringIO def show_tree(tree, total_width=36, fill=' '): ou

  • python中heapq堆排算法的实现

    目录 一.创建堆 二.访问堆内容 三.获取堆最大或最小值 四.heapq应用 一.创建堆 heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构 import heapq # 第一种 """ 函数定义: heapq.heappush(heap, item) - Push the value item onto the heap, maintaining

  • Python机器学习算法之决策树算法的实现与优缺点

    1.算法概述 决策树算法是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法. 分类算法是利用训练样本集获得分类函数即分类模型(分类器),从而实现将数据集中的样本划分到各个类中.分类模型通过学习训练样本中属性集与类别之间的潜在关系,并以此为依据对新样本属于哪一类进行预测. 决策树算法是直观运用概率分析的一种图解法,是一种十分常用的分类方法,属于有监督学习. 决策树是一种树形结构,其中每个内部结点表示在一个属性上的测试,每个

  • JS中多层次排序算法的实现代码

    引子 排序在编程中随处可见,从开始学习变成,到项目开发,基本上或多或少会遇到一些排序问题,接下来我要写的是我在实际开发终于到的一个排序问题,一开始卡了我很久,后面随着知识积累,实践变多才解决掉了,不知道是不是我搜索关键字不对,还是其他原因,百度也没有找到这方面的内容. 数据结构和需求 var arr = [ { "soNumber" : "52085848", "item" : "313281", "amount&q

  • 详解Python中图像边缘检测算法的实现

    目录 写在前面 1.一阶微分算子 1.1 Prewitt算子 1.2 Sobel算子 2.二阶微分算子 2.1 Laplace算子 2.2 LoG算子 3.Canny边缘检测 写在前面 从本节开始,计算机视觉教程进入第三章节——图像特征提取.在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用.本文讲解基础特征之一——图像边缘. 本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,

  • 详解Python中4种超参自动优化算法的实现

    目录 一.网格搜索(Grid Search) 二.随机搜索(Randomized Search) 三.贝叶斯优化(Bayesian Optimization) 四.Hyperband 总结 大家好,要想模型效果好,每个算法工程师都应该了解的流行超参数调优技术. 今天我给大家总结超参自动优化方法:网格搜索.随机搜索.贝叶斯优化 和 Hyperband,并附有相关的样例代码供大家学习. 一.网格搜索(Grid Search) 网格搜索是暴力搜索,在给定超参搜索空间内,尝试所有超参组合,最后搜索出最优

  • 详解Python排序算法的实现(冒泡,选择,插入,快速)

    目录 1. 前言 2. 冒泡排序算法 2.1 摆擂台法 2.2 相邻两个数字相比较 3. 选择排序算法 4. 插入排序 5. 快速排序 6. 总结 1. 前言 所谓排序,就是把一个数据群体按个体数据的特征按从大到小或从小到大的顺序存放. 排序在应用开发中很常见,如对商品按价格.人气.购买数量……显示. 初学编程者,刚开始接触的第一个稍微有点难理解的算法应该是排序算法中的冒泡算法. 我初学时,“脑思维”差点绕在 2 个循环结构的世界里出不来了.当时,老师要求我们死记冒泡的口诀,虽然有点搞笑,但是当

  • 应用OpenCV和Python进行SIFT算法的实现详解

    应用OpenCV和Python进行SIFT算法的实现 如下图为进行测试的gakki101和gakki102,分别验证基于BFmatcher.FlannBasedMatcher等的SIFT算法,对比其优劣.为体现出匹配效果对于旋转特性的优势,将图gakki101做成具有旋转特性的效果. 基于BFmatcher的SIFT实现 BFmatcher(Brute-Force Matching)暴力匹配,应用BFMatcher.knnMatch( )函数来进行核心的匹配,knnMatch(k-nearest

  • python常用排序算法的实现代码

    这篇文章主要介绍了python常用排序算法的实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 排序是计算机语言需要实现的基本算法之一,有序的数据结构会带来效率上的极大提升. 1.插入排序 插入排序默认当前被插入的序列是有序的,新元素插入到应该插入的位置,使得新序列仍然有序. def insertion_sort(old_list): n=len(old_list) k=0 for i in range(1,n): temp=old_lis

  • python Canny边缘检测算法的实现

    图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波.我们知道微分运算是求信号的变化率,具有加强高频分量的作用.在空域运算中来说,对图像的锐化就是计算微分.对于数字图像的离散信号,微分运算就变成计算差分或梯度.图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值,得到边缘图像. Canny边缘检测算子是一种多级检测算法.1986年由J

随机推荐