python库h5py入门详解

目录
  • h5py简单介绍
  • 1.创建一个h5py文件
  • 2.创建dataset数据集
  • 3.创建group组

本文只是简单的对h5py库的基本创建文件,数据集和读取数据的方式进行介绍,作者刚接触h5py,完全靠看文档自学,如果哪里说的不对,欢迎纠正!如果读者需要进一步详细的学习h5py的更多知识,请参考h5py的官方文档

h5py简单介绍

h5py文件是存放两类对象的容器,数据集(dataset)和组(group),dataset类似数组类的数据集合,和numpy的数组差不多。group是像文件夹一样的容器,它好比python中的字典,有键(key)和值(value)。group中可以存放dataset或者其他的group。”键”就是组成员的名称,”值”就是组成员对象本身(组或者数据集),下面来看下如何创建组和数据集。

1. 创建一个h5py文件

import h5py
#要是读取文件的话,就把w换成r
f=h5py.File("myh5py.hdf5","w")

在当前目录下会生成一个myh5py.hdf5文件

2. 创建dataset数据集

import h5py
f=h5py.File("myh5py.hdf5","w")
#deset1是数据集的name,(20,)代表数据集的shape,i代表的是数据集的元素类型
d1=f.create_dataset("dset1", (20,), 'i')
for key in f.keys():
    print(key)
    print(f[key].name)
    print(f[key].shape)
    print(f[key].value)

输出:
dset1
/dset1
(20,)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

这里我们仅仅创建了一个存放20个整型元素的数据集,并没有赋值,默认全是0,如何赋值呢,看下面的代码。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")

d1=f.create_dataset("dset1",(20,),'i')
#赋值
d1[...]=np.arange(20)
#或者我们可以直接按照下面的方式创建数据集并赋值
f["dset2"]=np.arange(15)

for key in f.keys():
    print(f[key].name)
    print(f[key].value)

输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
/dset2
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

如果我们有现成的numpy数组,那么可以在创建数据集的时候就赋值,这个时候就不必指定数据的类型和形状了,只需要把数组名传给参数data。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)
for key in f.keys():
    print(f[key].name)
    print(f[key].value)

输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]

现在把这几种创建的方式混合写下。看下面的代码

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#分别创建dset1,dset2,dset3这三个数据集
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)

d2=f.create_dataset("dset2",(3,4),'i')
d2[...]=np.arange(12).reshape((3,4))

f["dset3"]=np.arange(15)

for key in f.keys():
    print(f[key].name)
    print(f[key].value)

输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
/dset2
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
/dset3
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

3. 创建group组

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")

#创建一个名字为bar的组
g1=f.create_group("bar")

#在bar这个组里面分别创建name为dset1,dset2的数据集并赋值。
g1["dset1"]=np.arange(10)
g1["dset2"]=np.arange(12).reshape((3,4))

for key in g1.keys():
    print(g1[key].name)
    print(g1[key].value)

输出:
/bar/dset1
[0 1 2 3 4 5 6 7 8 9]
/bar/dset2
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

注意观察数据集dset1和dset2的名字是不是有点和前面的不一样,如果是直接创建的数据集,不在任何组里面,那么它的名字就是/+名字,现在这两个数据集都在bar这个group(组)里面,名字就变成了/bar+/名字,是不是有点文件夹的感觉!继续看下面的代码,你会对group和dataset的关系进一步了解。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")

#创建组bar1,组bar2,数据集dset
g1=f.create_group("bar1")
g2=f.create_group("bar2")
d=f.create_dataset("dset",data=np.arange(10))

#在bar1组里面创建一个组car1和一个数据集dset1。
c1=g1.create_group("car1")
d1=g1.create_dataset("dset1",data=np.arange(10))

#在bar2组里面创建一个组car2和一个数据集dset2
c2=g2.create_group("car2")
d2=g2.create_dataset("dset2",data=np.arange(10))

#根目录下的组和数据集
print(".............")
for key in f.keys():
    print(f[key].name)

#bar1这个组下面的组和数据集
print(".............")
for key in g1.keys():
    print(g1[key].name)

#bar2这个组下面的组和数据集
print(".............")
for key in g2.keys():
    print(g2[key].name)

#顺便看下car1组和car2组下面都有什么,估计你都猜到了为空。
print(".............")
print(c1.keys())
print(c2.keys())

输出:
.............
/bar1
/bar2
/dset
.............
/bar1/car1
/bar1/dset1
.............
/bar2/car2
/bar2/dset2
.............

到此这篇关于python库h5py入门详解的文章就介绍到这了,更多相关python h5py内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 解决Python 使用h5py加载文件,看不到keys()的问题

    python 3.x 环境下,使用h5py加载HDF5文件,查看keys,如下: >>> import h5py >>> f = h5py.File("a.h5",'r') >>> f.keys() 结果看不到keys: KeysView(<HDF5 file "a.h5" (mode r)>) 原因主要是 python2.x 和 python3.x对keys方法的返回处理不同. 官方说明如下: Wh

  • Python第三方库h5py_读取mat文件并显示值的方法

    mat数据格式是Matlab默认保存的数据格式.在Python中,我们可以使用h5py库来读取mat文件. >>> import h5py >>> data = h5py.File("**.mat") >>> test = data["digitStruct/name"] #<HDF5 dataset "name": shape (13068, 1), type "|O&quo

  • Python数据存储之 h5py详解

    1.Python数据存储(压缩) (1)numpy.save , numpy.savez , scipy.io.savemat numpy和scipy内建的数据存储方式. (2)cPickle + gzip cPickle是pickle内建的数据存储方式,gzip是常用的文件压缩模块. (3)h5py h5py是对HDF5文件格式进行读写的python包,关于h5py更多介绍与安装,参考官方网站 关于HDF5,参考官方网站.: 一个HDF5文件就是一个由两种基本数据对象(groups and d

  • python中利用h5py模块读取h5文件中的主键方法

    如下所示: import h5py import numpy as np #HDF5的写入: imgData = np.zeros((2,4)) f = h5py.File('HDF5_FILE.h5','w') #创建一个h5文件,文件指针是f f['data'] = imgData #将数据写入文件的主键data下面 f['labels'] = np.array([1,2,3,4,5]) #将数据写入文件的主键labels下面 f.close() #关闭文件 #HDF5的读取: f = h5

  • python库h5py入门详解

    目录 h5py简单介绍 1.创建一个h5py文件 2.创建dataset数据集 3.创建group组 本文只是简单的对h5py库的基本创建文件,数据集和读取数据的方式进行介绍,作者刚接触h5py,完全靠看文档自学,如果哪里说的不对,欢迎纠正!如果读者需要进一步详细的学习h5py的更多知识,请参考h5py的官方文档. h5py简单介绍 h5py文件是存放两类对象的容器,数据集(dataset)和组(group),dataset类似数组类的数据集合,和numpy的数组差不多.group是像文件夹一样

  • Python多线程编程入门详解

    目录 一.任务.进程和线程 任务 进程 线程 进程和线程的关系 二.Python既支持多进程,又支持多线程 Python实现多进程 Process进程类的说明 Python实现多线程 线程类Thread 总结 一.任务.进程和线程 现代操作系统比如Mac OS X, Linux,Windows等,都是支持"多任务"的操作系统. 什么叫"多任务"(multitasking)呢?简单地说,就是操作系统可以同时运行多个任务.例如你一边在用浏览器上查资料,一边在听MP3,一

  • Python 数值区间处理_对interval 库的快速入门详解

    使用 Python 进行数据处理的时候,常常会遇到判断一个数是否在一个区间内的操作.我们可以使用 if else 进行判断,但是,既然使用了 Python,那我们当然是想找一下有没有现成的轮子可以用.事实上,我们可以是用 interval 这一个库来完成我们需要的操作. 区间判断基础 最基础的区间判断操作就是先创建一个区间几个,然后使用 in 来判断一个数是否存在于区间之内.代码如下: from interval import Interval zoom_2_5 = Interval(2, 5)

  • Python爬虫天气预报实例详解(小白入门)

    本文研究的主要是Python爬虫天气预报的相关内容,具体介绍如下. 这次要爬的站点是这个:http://www.weather.com.cn/forecast/ 要求是把你所在城市过去一年的历史数据爬出来. 分析网站 首先来到目标数据的网页 http://www.weather.com.cn/weather40d/101280701.shtml 我们可以看到,我们需要的天气数据都是放在图表上的,在切换月份的时候,发现只有部分页面刷新了,就是天气数据的那块,而URL没有变化. 这是因为网页前端使用

  • python中数据爬虫requests库使用方法详解

    一.什么是Requests Requests 是Python语编写,基于urllib,采Apache2 Licensed开源协议的 HTTP 库.它urllib 更加方便,可以节约我们大量的工作,完全满足HTTP测试需求. 一句话--requests是python实现的简单易用的HTTP库 二.安装Requests库 进入命令行win+R执行 命令:pip install requests 项目导入:import requests 三.各种请求方式 直接上代码,不明白可以查看我的urllib的基

  • python二维码操作:对QRCode和MyQR入门详解

    python是所有编程语言中模块最丰富的 生活中常见的二维码功能在使用python第三方库来生成十分容易 三个大矩形是定位图案,用于标记二维码的大小.这三个定位图案有白边,通过这三个矩形就可以标识一个二维码了. QRCode 生成这个二维码只用一行 import qrcode qrcode.make("不睡觉干嘛呢").get_image().show() #设置URL必须添加http:// 安装导入QRCode pip install qrcode #方法多,体量小 安装导入MyQR

  • Python 中Pickle库的使用详解

    在"通过简单示例来理解什么是机器学习"这篇文章里提到了pickle库的使用,本文来做进一步的阐述. 那么为什么需要序列化和反序列化这一操作呢? 1.便于存储.序列化过程将文本信息转变为二进制数据流.这样就信息就容易存储在硬盘之中,当需要读取文件的时候,从硬盘中读取数据,然后再将其反序列化便可以得到原始的数据.在Python程序运行中得到了一些字符串.列表.字典等数据,想要长久的保存下来,方便以后使用,而不是简单的放入内存中关机断电就丢失数据.python模块大全中的Pickle模块就派

  • python随机生成库faker库api实例详解

    废话不多说,直接上代码! # -*- coding: utf-8 -*- # @Author : FELIX # @Date : 2018/6/30 9:49 from faker import Factory # zh_CN 表示中国大陆版 fake = Factory().create('zh_CN') # 产生随机手机号 print(fake.phone_number()) # 产生随机姓名 print(fake.name()) # 产生随机地址 print(fake.address())

  • python简单实现最大似然估计&scipy库的使用详解

    python简单实现最大似然估计 1.scipy库的安装 wim+R输入cmd,然后cd到python的pip路径,即安装:pip install scipy即可 2.导入scipy库 from scipy.sats import norm 导入scipy.sats中的norm 3.案例分析 from scipy.stats import norm import matplotlib.pyplot as plt import numpy as np ''' norm.cdf 返回对应的累计分布函

  • Python中Selenium库使用教程详解

    selenium介绍 selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行JavaScript代码的问题 selenium本质是通过驱动浏览器,完全模拟浏览器的操作,比如跳转.输入.点击.下拉等,来拿到网页渲染之后的结果,可支持多种浏览器 中文参考文档 官网 环境安装 下载安装selenium pip install selenium -i https://mirrors.aliyun.com/pypi/simple/ 谷歌浏览器驱动程序下载地址:

随机推荐