python 高阶函数简单介绍

把函数作为参数传入,这样的函数称为高阶函数,高阶函数是函数式编程的体现。函数式编程就是指这种高度抽象的编程范式。

1.体验高阶函数

在Python中,abs()函数可以完成对数字求绝对值计算。

abs(-10) # 10

round()函数可以完成对数字的四舍五入计算。

round(1.2) # 1
round(1.9) # 2

需求:任意两个数字,按照指定要求整理数字后再进行求和计算。

方法1

def add_num(a, b):
  return abs(a) + abs(b)

result = add_num(-1, 2)
print(result) # 3

方法2

def sum_num(a, b, f):
  return f(a) + f(b)

result = sum_num(-1, 2, abs)
print(result) # 3

注意:两种方法对比之后,发现,方法2的代码会更加简洁,函数灵活性更高。

函数式编程大量使用函数,减少了代码的重复,因此程序比较短,开发速度较快。

2.内置高阶函数

2.1 map()

map(func, lst),将传入的函数变量func作用到lst变量的每个元素中,并将结果组成新的列表(Python2)/迭代器(Python3)返回。

需求:计算list1序列中各个数字的2次方。

list1 = [1, 2, 3, 4, 5]

def func(x):
  return x ** 2

result = map(func, list1)

print(result) # <map object at 0x0000013769653198>
print(list(result)) # [1, 4, 9, 16, 25]

2.2 reduce()

reduce(func,lst),其中func必须有两个参数。每次func计算的结果继续和序列的下一个元素做累积计算。

注意:reduce()传入的参数func必须接收2个参数。

需求:计算list1序列中各个数字的累加和。

import functools

list1 = [1, 2, 3, 4, 5]

def func(a, b):
  return a + b

result = functools.reduce(func, list1)

print(result) # 15

2.3 filter()

filter(func, lst)函数用于过滤序列, 过滤掉不符合条件的元素, 返回一个 filter 对象。如果要转换为列表, 可以使用 list() 来转换。

list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

def func(x):
  return x % 2 == 0

result = filter(func, list1)

print(result) # <filter object at 0x0000017AF9DC3198>
print(list(result)) # [2, 4, 6, 8, 10]

以上就是python 高阶函数简单介绍的详细内容,更多关于python 高阶函数的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python高阶函数与装饰器函数的深入讲解

    本文主要介绍的是Python高阶函数与装饰器函数的相关内容,分享给大家,下面话不多说了,来一起看看详细的介绍吧 高阶函数 1.可以使用函数对象作为参数的函数 2.或可以将函数作为返回值的函数 3.函数对象:定义好的函数,使用函数名调用(不要加括号) #将函数作为参数的高阶函数,通过传入不同的函数,可以使执行的结果不同 4.内置高阶函数 (1)map数据映射函数 map函数接收的是两个参数,一个函数,一个序列,其功能是将序列中的值处理再依次返回至列表内.其返回值为一个迭代器对象 (2)reduce

  • 详解Python高阶函数

    本文要点 1.什么是高阶函数 2.python中有哪些常用的高阶函数 什么是高阶函数? 在了解什么是高阶函数之前,我们来看几个小例子.我们都知道在 python 中一切皆对象,函数也不例外.比如求绝对值函数 abs,我们可以用一个变量 f 指向 abs 函数,那么当调用 f() 的时候可以得到和 abs() 一样的效果,这说明变量可以指向函数! 同理我们将 abs 指向另一个函数 abs = len,那么 abs 将不再是求绝对值的函数了,abs指向的是求长度的 len 函数.这说明函数名其实就

  • python高阶函数map()和reduce()实例解析

    1.map()传入的有两个参数,函数和可迭代对象(Itreable),map()是把传入的函数依次作用于序列的每个元素,结果返回的是一个新的可迭代对象(Iterable). map()代码如下: # 定义f函数,返回的是x*x def f(x): return x*x # 调用map(),根据传入的函数和list,依次作用于每个元素 s=map(f,[1,2,3,4,5]) # 打印返回的迭代器的值 print(list(s)) # 查看类型 print(type(s)) 结果: [1, 4,

  • Python高阶函数、常用内置函数用法实例分析

    本文实例讲述了Python高阶函数.常用内置函数用法.分享给大家供大家参考,具体如下: 高阶函数: 允许将函数作为参数传入另一个函数: 允许返回一个函数. #返回值为函数的函数 sum=lambda x,y:x+y sub=lambda x,y:x-y calc_dict={"+":sum,"-":sub} def calc(x): return calc_dict[x] print(calc('-')(5,6)) print(calc('+')(5,6)) #参数

  • Python3的高阶函数map,reduce,filter的示例详解

    函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数. 注意其中:map和filter返回一个惰性序列,可迭代对象,需要转化为list >>> a = 3.1415 >>> round(a,2) 3.14 >>> a_round = round >>> a_round(a,2) 3.14 >>> def func_devide(x, y, f): return f(x) - f(y

  • python lambda函数及三个常用的高阶函数

    进行编程时,一般我们会给一个函数或者变量起一个名字,该名称是用于引用或寻址函数变量.但是有一个低调的函数,你不需要赋予它名字,因此该函数也叫匿名函数.该函数就是Python中的Lambda函数,下面就来为大家解析python-lambda函数,三个常用的高阶函数. 为什么要使用Python Lambda函数? 匿名函数可以在程序中任何需要的地方使用,但是这个函数只能使用一次,即一次性的.因此Python Lambda函数也称为丢弃函数,它可以与其他预定义函数(如filter(),map()等)一

  • Python中常用的高阶函数实例详解

    前言 高阶函数指的是能接收函数作为参数的函数或类:python中有一些内置的高阶函数,在某些场合使用可以提高代码的效率. lambda 当在使用一些函数的时候,我们不需要显式定义函数名称,直接传入lambda匿名函数即可.lambda匿名函数通常和其他函数搭配使用. 比如可以直接使用如下的lambda表达式计算当x=3时,y = x * 3 + 5的函数值. In [1]: (lambda x: x * 3 + 5)(3) Out[1]: 14 map map函数将一个函数和序列/迭代器(可以传

  • Python的高阶函数用法实例分析

    本文实例讲述了Python的高阶函数用法.分享给大家供大家参考,具体如下: 高阶函数 1.MapReduce MapReduce主要应用于分布式中. 大数据实际上是在15年下半年开始火起来的. 分布式思想:将一个连续的字符串转为列表,元素类型为字符串类型,将其都变成数字类型,使用分布式思想[类似于一件事一个人干起来慢,但是如果人多呢?效率则可以相应的提高],同理,一台电脑处理数据比较慢,但是如果有100台电脑同时处理,则效率则会快很多,最终将每台电脑上处理的数据进行整合. python的优点:内

  • 详解python内置常用高阶函数(列出了5个常用的)

    高阶函数是在Python中一个非常有用的功能函数,所谓高阶函数就是一个函数可以用来接收另一个函数作为参数,这样的函数叫做高阶函数. python内置常用高阶函数: 一.函数式编程 •函数本身可以赋值给变量,赋值后变量为函数: •允许将函数本身作为参数传入另一个函数: •允许返回一个函数. 1.map()函数 是 Python 内置的高阶函数,它接收一个函数 f 和一个 list, 并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回 def add(x): ret

  • 简单了解python高阶函数map/reduce

    高阶函数map/reduce Python内建了map()和reduce()函数. 我们先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下: 现在,我们用Python代码实现: def f(x): return x * x r =

随机推荐