Python OpenCV 彩色与灰度图像的转换实现

彩色图像转换为灰度图像

第一种方式通过 imread 读取图像的时候直接设置参数为 0 ,自动转换彩色图像为灰度图像
第二种方式,可以通过 split 进行通道分离,或者叫做读取单个通道,也可以将一个彩色图像分离成 3 个单通道的灰度图像

今天要学习的方法,是通过一个叫做 cvtColor 的方法实现该操作。

cv2.cvtColor() 方法用于将图像从一种颜色空间转换为另一种颜色空间。
OpenCV 提供了 150 多种 color-space 转换方法。多到用不过来~

该方法的语法格式为:

cv2.cvtColor(src, code[, dst[, dstCn]])

参数:

  • src:它是要更改其色彩空间的图像。
  • code:它是色彩空间转换代码。
  • dst:它是与 src 图像大小和深度相同的输出图像,可选参数。
  • dstCn:它是目标图像中的频道数。如果参数为 0,则通道数自动从 src 和代码得出,可选参数。

参数翻译成中文,也找到了

cvtColor(src,dst,code,dstCn)  ===>  (原图像,color转化代码,输出图像,输出通道)

转换灰度图代码如下:

import cv2

# path
path = './7_1.jpg'

# 读取图片
src = cv2.imread(path)

# 图片展示窗口名称
window_name = 'Image'

# BGR 转换成灰度图
image = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)

cv2.imshow(window_name, image)

cv2.waitKey()

也看到了 HSV 格式图片,转换结果如下,有点吓人,顺便转换了其他的一些格式:

import cv2
import matplotlib.pyplot as plt
# path
path = './7_1.jpg'

# 读取图片
src = cv2.imread(path)

# 图片展示窗口名称
window_name = 'Image'

# BGR 转换成 RGB
image1 = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)

# BGR 转换成 Gray
image2 = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)

# BGR 转换成 HSV
image3 = cv2.cvtColor(src, cv2.COLOR_BGR2HSV)

plt.subplot(1, 3, 1)
plt.imshow(image1)
plt.title("RGB")

plt.subplot(1, 3, 2)
plt.imshow(image2,"gray")
plt.title("GRAY")

plt.subplot(1, 3, 3)
plt.imshow(image3,"hsv")
plt.title("hsv")

plt.show()

伪彩色图像

彩色图片可以变成灰度图,那相应的灰度图也可以变成彩色的,当然这里说的是伪彩色图像。

这部分内容由于目前应用场景不明确,给大家贴一下我学习过程中看到的博客吧。

https://blog.csdn.net/kingroc/article/details/101302997
https://blog.csdn.net/sns1991sns/article/details/102838303
https://blog.csdn.net/xiaxuesong666/article/details/79522904

关于伪彩色图像的说明,在百度百科可以直接查阅到。

感谢大佬方向性的指导

到此这篇关于Python OpenCV 彩色与灰度图像的转换实现的文章就介绍到这了,更多相关OpenCV彩色与灰度图像转换内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • OpenCV图像处理之常见的图像灰度变换

    1.灰度线性变换 图像的灰度线性变换是图像灰度变换的一种,图像的灰度变换通过建立灰度映射来调整源图像的灰度,从而达到图像增强的目的.灰度映射通常是用灰度变换曲线来进行表示.通常来说,它是将图像的像素值通过指定的线性函数进行变换,以此来增强或者来减弱图像的灰度,灰度线性变换的函数就是常见的线性函数. g(x, y) = k · f(x, y) + d 设源图像的灰度值为x,则进行灰度线性变换后的灰度值为y = kx + b (0<=y<=255),下面分别来讨论k的取值变化时线性变换的不同效果

  • Opencv实现图像灰度线性变换

    本文实例为大家分享了Opencv实现图像灰度线性变换的具体代码,供大家参考,具体内容如下 通过图像灰度线性变换提高图像对比度和亮度,原图像为src,目标图像为dst,则dst(x,y) = * src(x,y) + . 不仅对单通道图像可以做灰度线性变换,对三通道图像同样可以. #include<opencv2/opencv.hpp>; #include<iostream> using namespace cv; using namespace std; int main(int

  • Python OpenCV 彩色与灰度图像的转换实现

    彩色图像转换为灰度图像 第一种方式通过 imread 读取图像的时候直接设置参数为 0 ,自动转换彩色图像为灰度图像 第二种方式,可以通过 split 进行通道分离,或者叫做读取单个通道,也可以将一个彩色图像分离成 3 个单通道的灰度图像 今天要学习的方法,是通过一个叫做 cvtColor 的方法实现该操作. cv2.cvtColor() 方法用于将图像从一种颜色空间转换为另一种颜色空间. OpenCV 提供了 150 多种 color-space 转换方法.多到用不过来~ 该方法的语法格式为:

  • Python+OpenCV解决彩色图亮度不均衡问题

    目录 前言 处理 对比度拉伸 log变换 Gamma校正 直方图均衡化 对比度自适应直方图均衡化(CLAHE) 处理结果展示 附源码 opencv版本 skimage版本 前言 CSDN博客好久没有换过头像了,想换个新头像,在相册里面翻来翻去,然后就找到以前养的小宠物的一些照片,有一张特别有意思 惊恐到站起来的金丝熊:这家伙不会要吃我吧 没见过仓鼠的小猫:这啥玩意儿? 好,就决定把这张图当自己的头像了 一顿操作之后,把头像换成了这张照片 此时我:啥玩意儿? ....感觉黑乎乎的,啥也看不清 这时

  • python opencv实现灰度图和彩色图的互相转换

    目录 opencv灰度图和彩色图互相转换 注意: 附:python将灰度图转换为RGB彩色图 总结 opencv灰度图和彩色图互相转换 如果摄像头本来就得到3维度红外图那就不用处理直接可以用: import cv2 cap = cv2.VideoCapture(0) ret, image_np = cap.read() 直接转成单通道的灰度图看看能不能用: #如果后面不写0,那就是默认彩色的 # 第一种方式 image = cv2.imread('***/timg4.jpg',0) #第二种方式

  • python实现彩色图转换成灰度图

    本文实例为大家分享了python实现彩色图转换成灰度图的具体代码,供大家参考,具体内容如下 from PIL import Image import os # 图像组成:红绿蓝 (RGB)三原色组成 亮度(255,255,255) image = "Annie1.jpg" img = Image.open(image) img_all = "素描" + image new = Image.new("L", img.size, 255) width

  • Python+OpenCV图像处理—— 色彩空间转换

    一.色彩空间的转换 代码如下: #色彩空间转换 import cv2 as cv def color_space_demo(img): gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) #RGB转换为GRAY 这里的GRAY是单通道的 cv.imshow("gray", gray) hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) #RGB转换为HSV cv.imshow("hsv", hsv) y

  • Python OpenCV实现传统图片格式与base64转换

    Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,是一种基于64个可打印字符来表示二进制数据的方法.通过http传输图片常常将图片数据转换成base64之后再进行传输. Base64简介 Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,Base64就是一种基于64个可打印字符来表示二进制数据的方法.可查看RFC2045-RFC2049,上面有MIME的详细规范. Base64编码是从二进制到字符的过程,可用于在HTTP环境下传递较长的标识信息.例如,在Java

  • python Opencv计算图像相似度过程解析

    这篇文章主要介绍了python Opencv计算图像相似度过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你儿子. 还有其他物品.什么桌子带腿.镜子反光能在里面倒影出东西,各种各样的特征,我们通过学习.归纳,自然而然能够很快识别分类出新物品.

  • Python opencv缺陷检测的实现及问题解决

    题目描述 利用opencv或其他工具编写程序实现缺陷检测. 实现过程 # -*- coding: utf-8 -*- ''' 作者 : 丁毅 开发时间 : 2021/4/21 15:30 ''' import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont import matplotlib.pyplot as plt #用于给图片添加中文字符的函数 def cv2ImgAddText(img, text, l

  • python OpenCV学习笔记之绘制直方图的方法

    本篇文章主要介绍了python OpenCV学习笔记之绘制直方图的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 官方文档 – https://docs.opencv.org/3.4.0/d1/db7/tutorial_py_histogram_begins.html 直方图会让你对图像的强度分布有一个全面的认识.它是一个在x轴上带有像素值(从0到255,但不总是),在y轴上的图像中对应的像素数量的图. 这只是理解图像的另一种方式.通过观察图像的直方图,你可以直

  • python OpenCV学习笔记实现二维直方图

    本文介绍了python OpenCV学习笔记实现二维直方图,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dd/d0d/tutorial_py_2d_histogram.html 在前一篇文章中,我们计算并绘制了一维的直方图.它被称为一维,因为我们只考虑一个特性,即像素的灰度强度值.但是在二维直方图中,你可以考虑两个特征.通常它用于寻找颜色直方图,其中两个特征是每个像素的色调和饱和度值. 有一个python样例(samples/python/c

随机推荐