python神经网络slim常用函数训练保存模型
目录
- 学习前言
- slim是什么
- slim常用函数
- 1、slim = tf.contrib.slim
- 2、slim.create_global_step
- 3、slim.dataset.Dataset
- 4、slim.dataset_data_provider.DatasetDataProvider
- 5、slim.conv2d
- 6、slim.max_pool2d
- 7、slim.fully_connected
- 8、slim.learning.train
- 本次博文实现的目标
- 整体框架构建思路
- 1、整体框架
- 2、网络构建Net.py
- 3、进行模型训练CNN.py
- 4、训练结果
学习前言
在SSD的框架中,除去tfrecord处理是非常重要的一环之外,slim框架的使用也是非常重要的一环,于是我开始学习slim啦
slim是什么
slim的英文本意是苗条的意思,其实在tensorflow中,它相当于就是tensorflow简洁版的意思,直接使用tensorflow构建代码可能会比较复杂,使用slim可以将一些tensorflow代码合并在一起,其具体作用与keras类似。
但是相比Keras,slim更加贴近tensorflow原生,其更加轻量级。
TF-Slim是tensorflow中定义、训练和评估复杂模型的轻量级库。tf-slim中的组件可以轻易地和原生tensorflow框架以及例如tf.contrib.learn这样的框架进行整合。
slim常用函数
1、slim = tf.contrib.slim
slim = tf.contrib.slim用于在python中声明slim框架的对象,只有完成该声明后才可以利用slim框架构建tensorflow神经网络。
2、slim.create_global_step
该函数用于生成全局步数,全局步数可以用于学习率的自适应衰减。
3、slim.dataset.Dataset
该函数用于从tfrecords类型的文件中获取数据,实际上是利用该数据生成了一个数据库,在slim之后训练时可以从中获取数据用于训练。常见的Dataset使用方式如下:
slim.dataset.Dataset( data_sources=record_path, reader=reader, decoder=decoder, num_samples=num_samples, num_classes=num_classes, items_to_descriptions=items_to_descriptions, labels_to_names=labels_to_names)
其中:
- file_pattern指向tfrecords文件的位置;
- reader默认是tf.TFRecordReader,也就是tensorflow支持的tfrecord读取器;
- decoder指的是如何将tfrecord文件里的内容解码成自己需要的内容;
- num_samples指的是tfrecord文件里一共具有多少个样本;
- items_to_descriptions是解码后每个项目的描述;
- num_classes是值一共有多少个种类
其内部参数具体的设置方式如下,本段代码主要是对神经网络学习tfrecords文件的写入、读取及其内容解析中MNIST数据集进行slim数据库的构建,如果不知道如何构建tfrecord文件的可以看我的上一篇博文。
def get_record_dataset(record_path, reader=None, image_shape=[784], num_samples=55000, num_classes=10): if not reader: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature([784], tf.float32, default_value=tf.zeros([784], dtype=tf.float32)), 'image/class/label':tf.FixedLenFeature([1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64))} items_to_handlers = { 'image': slim.tfexample_decoder.Tensor('image/encoded', shape = [784]), 'label': slim.tfexample_decoder.Tensor('image/class/label', shape=[])} decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None items_to_descriptions = { 'image': 'An image with shape image_shape.', 'label': 'A single integer between 0 and 9.'} return slim.dataset.Dataset( data_sources=record_path, reader=reader, decoder=decoder, num_samples=num_samples, num_classes=num_classes, items_to_descriptions=items_to_descriptions, labels_to_names=labels_to_names)
本段代码分别对image和label进行读取。
其中:
- items_to_handlers指的是数据在tfrecords中的存储方式;
- items_to_handlers指的是数据解码后的格式;
- decoder用于将items_to_handlers与items_to_handlers结合使用;
- items_to_descriptions是解码后每个数据的描述。
4、slim.dataset_data_provider.DatasetDataProvider
上一步的函数构成的是数据库,但是如何从数据库里面读取数据我们还不知道,实际上slim已经给了一个函数作为数据库的接口,利用该函数可以生成provider,顾名思义,provider就是数据库向外界提供数据的接口。
具体使用方式如下:
# 创建provider provider = slim.dataset_data_provider.DatasetDataProvider( dataset, num_readers= FLAGS.num_readers, common_queue_capacity=20*FLAGS.batch_size, common_queue_min=10*FLAGS.batch_size, shuffle=True) # 在提供商处获取image image, label = provider.get(['image', 'label'])
其中:
- dataset就是数据库;
- num_readers指的是使用的并行读取器的数量;
- common_queue_capacity指的是公共队列的容量;
- common_queue_min指的是公共队列出队后的最小元素个数;
- shuffle指的是读取时是否打乱顺序。
在提供商处获取image后,可以利用tf.train.batch分批次获取训练集。
inputs, labels = tf.train.batch([image, label], batch_size=FLAGS.batch_size, allow_smaller_final_batch=True, num_threads=FLAGS.num_readers, capacity=FLAGS.batch_size*5)
其中:
- batch_size指的是每一个批次训练集的数量;
- allow_smaller_final_batch指的是是否允许存在batch小于batch_size的数据集;
- num_threads指的是用的线程数;
- capacity一个整数,用来设置队列中元素的最大数量。
tf.train.batch具体的使用方法可以参照我的另一篇博文神经网络之批量学习tf.train.batch
此时获得的inputs, labels可以在下一步传入网络了。
5、slim.conv2d
slim.conv2d用于构建卷积层,其具体的代码如下:
slim.conv2d(inputs, num_outputs, kernel_size, stride=1, padding='SAME', data_format=None, rate=1, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None)
其中参数很多,常用的参数解析如下:
- inputs指的是需要做卷积的输入图像;
- num_outputs指的是卷积核的个数,也就输出net的channels数量;
- kernel_size指的是卷积核的维度,用一个列表或元组表示;
- stride指的是卷积时在图像每一维的步长;
- padding使用VALID或者SAME;
- data_format指的是输入的input的格式,NCHW 与 NHWC;
- rate指的是使用空洞卷积的膨胀率;
- activation_fn指的是激活函数的种类,默认的为ReLU函数;
- normalizer_fn指的是正则化函数;
- reuse指的是是否共享层或者和变量;
- trainable指的是卷积层的参数是否可被训练;
- scope指的是共享变量所指的variable_scope。
6、slim.max_pool2d
slim.max_pool2d用于最大池化,具体代码如下:
slim.fully_connected(inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None)
其中:
- inputs指的是指需要做卷积的输入图像;
- kernel_size指的是池化核的维度,用一个列表或元组表示;
- stride指的是池化的步长;
- padding使用VALID或者SAME;
- data_format支持’ NHWC ‘(默认值)和’ NCHW ';
- scope指的是name_scope的可选作用域。
7、slim.fully_connected
slim.fully_connected用于定义全连接层。
具体代码如下:
slim.fully_connected(inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None)
其中:
- inputs指的是指需要全连接的数据;
- num_outputs指的是输出的维度;
- activation_fn指的是激活函数;
- weights_initializer指的是权值初始化方法;
- biases_initializer指的是阈值初始化方法;
- trainable指的是是否可以训练;
- scope指的是name_scope的可选作用域。
8、slim.learning.train
该函数用于将训练托管给slim框架进行,非常好用,具体使用代码如下。
slim.learning.train( train_op, logdir=FLAGS.train_dir, master='', is_chief=True, number_of_steps = FLAGS.max_number_of_steps, log_every_n_steps = FLAGS.log_every_n_steps, save_summaries_secs= FLAGS.save_summaries_secs, saver=saver, save_interval_secs = FLAGS.save_interval_secs, session_config=config, sync_optimizer=None)
其中:
- train_op为训练对象,可以利用slim.learning.create_train_op构建;
- logdir为模型训练产生日志的地址;
- master指的是tensorflow master的地址;
- is_chief指的是是否在主要副本上运行training;
- number_of_steps指的是训练时最大的梯度更新次数,当global step大于这个值时,停止训练。如果这个值为None,则训练不会停止下来;
- log_every_n_steps指的是多少步在cmd上进行显示;
- save_summaries_secs指的是多久进行一次数据的summaries;
- saver指的是保存模型的方法;
- save_interval_secs指的是多久保存一次模型;
- session_config指的是tf.ConfigProto的一个实例,用于配置Session;
- sync_optimizer指的是tf.train.SyncReplicasOptimizer的一个实例,或者这个实例的一个列表。如果这个参数被更新,则梯度更新操作将同步进行。如果为None,则梯度更新操作将异步进行。
其使用的参数较多,具体配置方式如下,并不复杂:
# 获得损失值 loss = Conv_Net.get_loss(labels=labels,logits = logits) # 学习率多久衰减一次 decay_steps = int(dataset.num_samples / FLAGS.batch_size * FLAGS.num_epochs_per_decay) # 学习率指数下降 learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, global_step, decay_steps, FLAGS.learning_rate_decay_factor, staircase=False, name='exponential_decay_learning_rate') # 优化器 optimizer = tf.train.AdamOptimizer(learning_rate) # 构建训练对象 train_op = slim.learning.create_train_op(loss, optimizer, summarize_gradients=False) # gpu使用比率 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction, allow_growth = True) # 参数配置 config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options) # 保存方式 saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1.0, write_version=2, pad_step_number=False)
本次博文实现的目标
本次博文主要是利用slim构建了一个卷积神经网络,用于手写体的识别,经过20000次训练后,精度达到99.2%。
具体的代码可以点击下载
已经存储好的tfrecords也可以点击下载
整体框架构建思路
1、整体框架
整个思路的构建如下图所示:
其中:
- Net.py是网络的主体;
- CNN.py进行模型训练的主体;
- Load_Predict.py是如何用模型进行预测(下一个博文讲解);
- TFrecord_read和TF_record_write主要是用于tfrecord文件的生成。
2、网络构建Net.py
网络构建部分的函数比较简单,主要是设计了一个对象用于读取网络结构,网络结构比较简单,其shape变化如下:
(28,28,1)=>(28,28,32)=>(14,14,32)=>(14,14,64)=>(7,7,64)=>(3136)=>(1024)=>(10)
import tensorflow as tf import numpy as np # 创建slim对象 slim = tf.contrib.slim class Conv_Net(object): def net(self,inputs): with tf.variable_scope("Net"): # 第一个卷积层 net = slim.conv2d(inputs,32,[5,5],padding = "SAME",scope = 'conv1_1') net = slim.max_pool2d(net,[2,2],stride = 2,padding = "SAME",scope = 'pool1') # 第二个卷积层 net = slim.conv2d(net,64,[3,3],padding = "SAME",scope = 'conv2_1') net = slim.max_pool2d(net,[2,2],stride = 2,padding = "SAME",scope = 'pool2') net = tf.reshape(net,[-1,7*7*64]) # 全连接层 layer1 = slim.fully_connected(net,512,scope = 'fully1') layer1 = slim.dropout(layer1, 0.5, scope='dropout1') # 这里的layer3忘了改成layer2了,试了很多结构,这个比较好 layer3 = slim.fully_connected(layer1,10,activation_fn=tf.nn.softmax,scope = 'fully3') return layer3 def get_loss(self,labels,logits): with tf.variable_scope("loss"): loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels,logits = logits),name = 'loss') tf.summary.scalar("loss",loss) return loss
3、进行模型训练CNN.py
进行模型训练CNN.py中的训练过程主要是模仿SSD的训练过程的框架构成的,如果大家对SSD有疑问,欢迎大家看我的博文SSD算法训练部分详解。
其具体的训练如下:
1、设定训练参数。
2、读取MNIST数据集。
3、建立卷积神经网络。
4、将数据集的image通过神经网络,获得prediction。
5、利用prediction和实际label获得loss。
6、利用优化器完成梯度下降并保存模型。
具体代码如下,其中所有执行步骤已经利用如下格式隔开:
############################################################# # XXXXXXXXXXXXX #############################################################
import tensorflow as tf import numpy as np from nets import Net flags = tf.app.flags ############################################################# # 设置训练参数 ############################################################# # =========================================================================== # # General Flags. # =========================================================================== # # train_dir用于保存训练后的模型和日志 tf.app.flags.DEFINE_string( 'train_dir', './logs', 'Directory where checkpoints and event logs are written to.') # num_readers是在对数据集进行读取时所用的平行读取器个数 tf.app.flags.DEFINE_integer( 'num_readers', 4, 'The number of parallel readers that read data from the dataset.') # 在进行训练batch的构建时,所用的线程数 tf.app.flags.DEFINE_integer( 'num_preprocessing_threads', 4, 'The number of threads used to create the batches.') # 每十步进行一次log输出,在窗口上 tf.app.flags.DEFINE_integer( 'log_every_n_steps', 100, 'The frequency with which logs are print.') # 每150秒存储一次记录 tf.app.flags.DEFINE_integer( 'save_summaries_secs', 150, 'The frequency with which summaries are saved, in seconds.') # 每150秒存储一次模型 tf.app.flags.DEFINE_integer( 'save_interval_secs', 150, 'The frequency with which the model is saved, in seconds.') # 可以使用的gpu内存数量 tf.app.flags.DEFINE_float( 'gpu_memory_fraction', 0.6, 'GPU memory fraction to use.') # =========================================================================== # # Learning Rate Flags. # =========================================================================== # # 学习率衰减的方式,有固定、指数衰减等 tf.app.flags.DEFINE_string( 'learning_rate_decay_type', 'exponential', 'Specifies how the learning rate is decayed. One of "fixed", "exponential",' ' or "polynomial"') # 初始学习率 tf.app.flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.') # 结束时的学习率 tf.app.flags.DEFINE_float( 'end_learning_rate', 0.0001, 'The minimal end learning rate used by a polynomial decay learning rate.') tf.app.flags.DEFINE_float( 'label_smoothing', 0.0, 'The amount of label smoothing.') # 学习率衰减因素 tf.app.flags.DEFINE_float( 'learning_rate_decay_factor', 0.94, 'Learning rate decay factor.') tf.app.flags.DEFINE_float( 'num_epochs_per_decay', 2.0, 'Number of epochs after which learning rate decays.') tf.app.flags.DEFINE_float( 'moving_average_decay', None, 'The decay to use for the moving average.' 'If left as None, then moving averages are not used.') # adam参数 tf.app.flags.DEFINE_float( 'adam_beta1', 0.9, 'The exponential decay rate for the 1st moment estimates.') tf.app.flags.DEFINE_float( 'adam_beta2', 0.999, 'The exponential decay rate for the 2nd moment estimates.') tf.app.flags.DEFINE_float('opt_epsilon', 1.0, 'Epsilon term for the optimizer.') # =========================================================================== # # Dataset Flags. # =========================================================================== # # 数据集目录 tf.app.flags.DEFINE_string( 'dataset_dir', './record/output.tfrecords', 'The directory where the dataset files are stored.') # 每一次训练batch的大小 tf.app.flags.DEFINE_integer( 'batch_size', 100, 'The number of samples in each batch.') # 最大训练次数 tf.app.flags.DEFINE_integer('max_number_of_steps', 20000, 'The maximum number of training steps.') FLAGS = flags.FLAGS def get_record_dataset(record_path, reader=None, image_shape=[784], num_samples=55000, num_classes=10): if not reader: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature([784], tf.float32, default_value=tf.zeros([784], dtype=tf.float32)), 'image/class/label':tf.FixedLenFeature([1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64))} items_to_handlers = { 'image': slim.tfexample_decoder.Tensor('image/encoded', shape = [784]), 'label': slim.tfexample_decoder.Tensor('image/class/label', shape=[])} decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None items_to_descriptions = { 'image': 'An image with shape image_shape.', 'label': 'A single integer between 0 and 9.'} return slim.dataset.Dataset( data_sources=record_path, reader=reader, decoder=decoder, num_samples=num_samples, num_classes=num_classes, items_to_descriptions=items_to_descriptions, labels_to_names=labels_to_names) if __name__ == "__main__": # 打印日志 tf.logging.set_verbosity(tf.logging.DEBUG) with tf.Graph().as_default(): # 最大世代 MAX_EPOCH = 50000 # 创建slim对象 slim = tf.contrib.slim # 步数 global_step = slim.create_global_step() ############################################################# # 读取MNIST数据集 ############################################################# # 读取数据集 dataset = get_record_dataset(FLAGS.dataset_dir,num_samples = 55000) # 创建provider provider = slim.dataset_data_provider.DatasetDataProvider( dataset, num_readers= FLAGS.num_readers, common_queue_capacity=20*FLAGS.batch_size, common_queue_min=10*FLAGS.batch_size, shuffle=True) # 在提供商处获取image image, label = provider.get(['image', 'label']) # 每次提取100个手写体 inputs, labels = tf.train.batch([image, label], batch_size=FLAGS.batch_size, allow_smaller_final_batch=True, num_threads=FLAGS.num_readers, capacity=FLAGS.batch_size*5) ############################################################# #建立卷积神经网络,并将数据集的image通过神经网络,获得prediction。 ############################################################# inputs = tf.cast(inputs,tf.float32) inputs_reshape = tf.reshape(inputs,[-1,28,28,1]) Conv_Net = Net.Conv_Net() logits = Conv_Net.net(inputs_reshape) ############################################################# # 利用prediction和实际label获得loss。 ############################################################# # 获得损失值 loss = Conv_Net.get_loss(labels = labels,logits = logits) decay_steps = int(dataset.num_samples / FLAGS.batch_size * FLAGS.num_epochs_per_decay) # 学习率指数下降 learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, global_step, decay_steps, FLAGS.learning_rate_decay_factor, staircase=False, name='exponential_decay_learning_rate') ############################################################# # 利用优化器完成梯度下降并保存模型。 ############################################################# # 优化器 optimizer = tf.train.AdamOptimizer(learning_rate) # 构建训练对象 train_op = slim.learning.create_train_op(loss, optimizer, summarize_gradients=False) # gpu使用比率 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction, allow_growth = True) # 参数配置 config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options) # 保存方式 saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1.0, write_version=2, pad_step_number=False) # 托管训练 slim.learning.train( train_op, logdir=FLAGS.train_dir, master='', is_chief=True, number_of_steps = FLAGS.max_number_of_steps, log_every_n_steps = FLAGS.log_every_n_steps, save_summaries_secs= FLAGS.save_summaries_secs, saver=saver, save_interval_secs = FLAGS.save_interval_secs, session_config=config, sync_optimizer=None)
4、训练结果
在完成数据集的构建后,直接运行CNN.py就可以开始训练。训练的graph如下:
Net的内容为(这里的layer3忘了改成layer2了,试了很多结构,这个比较好):
输出的logs为:
…… INFO:tensorflow:global step 17899: loss = 1.4701 (0.040 sec/step) INFO:tensorflow:global step 17999: loss = 1.4612 (0.040 sec/step) INFO:tensorflow:global step 18099: loss = 1.4612 (0.051 sec/step) INFO:tensorflow:global step 18199: loss = 1.4612 (0.040 sec/step) INFO:tensorflow:global step 18299: loss = 1.4668 (0.048 sec/step) INFO:tensorflow:global step 18399: loss = 1.4615 (0.039 sec/step) INFO:tensorflow:global step 18499: loss = 1.4612 (0.050 sec/step) INFO:tensorflow:global step 18599: loss = 1.4812 (0.050 sec/step) INFO:tensorflow:global step 18699: loss = 1.4612 (0.060 sec/step) INFO:tensorflow:global step 18799: loss = 1.4712 (0.050 sec/step) INFO:tensorflow:global step 18899: loss = 1.4712 (0.040 sec/step) INFO:tensorflow:global step 18999: loss = 1.4716 (0.040 sec/step) INFO:tensorflow:global step 19199: loss = 1.4613 (0.040 sec/step) INFO:tensorflow:global step 19299: loss = 1.4619 (0.040 sec/step) INFO:tensorflow:global step 19399: loss = 1.4732 (0.040 sec/step) INFO:tensorflow:global step 19499: loss = 1.4612 (0.050 sec/step) INFO:tensorflow:global step 19599: loss = 1.4614 (0.040 sec/step) INFO:tensorflow:global step 19699: loss = 1.4612 (0.040 sec/step) INFO:tensorflow:global step 19799: loss = 1.4612 (0.040 sec/step) INFO:tensorflow:global step 19899: loss = 1.4612 (0.040 sec/step) INFO:tensorflow:global step 19999: loss = 1.4612 (0.040 sec/step) INFO:tensorflow:Stopping Training. INFO:tensorflow:Finished training! Saving model to disk.
以上就是python神经网络使用slim函数训练保存模型的详细内容,更多关于slim函数训练保存模型的资料请关注我们其它相关文章!