PyTorch实现手写数字的识别入门小白教程

目录
  • 手写数字识别(小白入门)
    • 1.数据预处理
    • 2.训练模型
    • 3.测试模型,保存
    • 4.调用模型
    • 5.完整代码

手写数字识别(小白入门)

今早刚刚上了节实验课,关于逻辑回归,所以手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽哈哈。

实验结果:

1.数据预处理

其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题。代码如下:

#数据预处理
trainData = np.loadtxt(open('digits_training.csv', 'r'), delimiter=",",skiprows=1)#装载数据
MTrain, NTrain = np.shape(trainData)  #行列数
print("训练集:",MTrain,NTrain)
xTrain = trainData[:,1:NTrain]
xTrain_col_avg = np.mean(xTrain, axis=0) #对各列求均值
xTrain =(xTrain- xTrain_col_avg)/255  #归一化
yTrain = trainData[:,0]

2.训练模型

对于数学差的一批的我来说,学习算法真的是太太太扎心了,好在具体算法封装在了sklearn库中。简单两行代码即可完成。具体参数的含义随随便便一搜到处都是,我就不班门弄斧了,每次看见算法除了头晕啥感觉没有。

model = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=500)
model.fit(xTrain, yTrain)

3.测试模型,保存

接下来测试一下模型,准确率能达到百分之90,也不算太高,训练数据集本来也不是很多。
为了方便,所以把模型保存下来,不至于运行一次就得训练一次。

#测试模型
testData = np.loadtxt(open('digits_testing.csv', 'r'), delimiter=",",skiprows=1)
MTest,NTest = np.shape(testData)
print("测试集:",MTest,NTest)
xTest = testData[:,1:NTest]
xTest = (xTest-xTrain_col_avg) /255   # 使用训练数据的列均值进行处理
yTest = testData[:,0]
yPredict = model.predict(xTest)
errors = np.count_nonzero(yTest - yPredict) #返回非零项个数
print("预测完毕。错误:", errors, "条")
print("测试数据正确率:", (MTest - errors) / MTest)

'''================================='''
#保存模型

# 创建文件目录
dirs = 'testModel'
if not os.path.exists(dirs):
    os.makedirs(dirs)
joblib.dump(model, dirs+'/model.pkl')
print("模型已保存")

https://download.csdn.net/download/qq_45874897/12427896 需要的可以自行下载

4.调用模型

既然模型训练好了,就来放几张图片调用模型试一下看看怎么样
导入要测试的图片,然后更改大小为28*28,将图片二值化减小误差。
为了让结果看起来有逼格,所以最后把图片和识别数字同实显示出来。

import  cv2
import numpy as np
from sklearn.externals import joblib

map=cv2.imread(r"C:\Users\lenovo\Desktop\[DX6@[C$%@2RS0R2KPE[W@V.png")
GrayImage = cv2.cvtColor(map, cv2.COLOR_BGR2GRAY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
Image=cv2.resize(thresh2,(28,28))
img_array = np.asarray(Image)
z=img_array.reshape(1,-1)

'''================================================'''

model = joblib.load('testModel'+'/model.pkl')
yPredict = model.predict(z)
print(yPredict)
y=str(yPredict)
cv2.putText(map,y, (10,20), cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,255), 2, cv2.LINE_AA)
cv2.imshow("map",map)
cv2.waitKey(0)

5.完整代码

test1.py

import numpy as np
from sklearn.linear_model import LogisticRegression
import os
from sklearn.externals import joblib

#数据预处理
trainData = np.loadtxt(open('digits_training.csv', 'r'), delimiter=",",skiprows=1)#装载数据
MTrain, NTrain = np.shape(trainData)  #行列数
print("训练集:",MTrain,NTrain)
xTrain = trainData[:,1:NTrain]
xTrain_col_avg = np.mean(xTrain, axis=0) #对各列求均值
xTrain =(xTrain- xTrain_col_avg)/255  #归一化
yTrain = trainData[:,0]

'''================================='''
#训练模型
model = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=500)
model.fit(xTrain, yTrain)
print("训练完毕")

'''================================='''
#测试模型
testData = np.loadtxt(open('digits_testing.csv', 'r'), delimiter=",",skiprows=1)
MTest,NTest = np.shape(testData)
print("测试集:",MTest,NTest)
xTest = testData[:,1:NTest]
xTest = (xTest-xTrain_col_avg) /255   # 使用训练数据的列均值进行处理
yTest = testData[:,0]
yPredict = model.predict(xTest)
errors = np.count_nonzero(yTest - yPredict) #返回非零项个数
print("预测完毕。错误:", errors, "条")
print("测试数据正确率:", (MTest - errors) / MTest)

'''================================='''
#保存模型

# 创建文件目录
dirs = 'testModel'
if not os.path.exists(dirs):
    os.makedirs(dirs)
joblib.dump(model, dirs+'/model.pkl')
print("模型已保存")

运行结果

test2.py

import  cv2
import numpy as np
from sklearn.externals import joblib

map=cv2.imread(r"C:\Users\lenovo\Desktop\[DX6@[C$%@2RS0R2KPE[W@V.png")
GrayImage = cv2.cvtColor(map, cv2.COLOR_BGR2GRAY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
Image=cv2.resize(thresh2,(28,28))
img_array = np.asarray(Image)
z=img_array.reshape(1,-1)

'''================================================'''

model = joblib.load('testModel'+'/model.pkl')
yPredict = model.predict(z)
print(yPredict)
y=str(yPredict)
cv2.putText(map,y, (10,20), cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,255), 2, cv2.LINE_AA)
cv2.imshow("map",map)
cv2.waitKey(0)

提供几张样本用来测试:

实验中还有很多地方需要优化,比如数据集太少,泛化能力太差,用样本的数据测试正确率挺高,但是用我自己手写的字正确率就太低了,可能我字写的太丑,哎,还是自己太菜了,以后得多学学算法了。

到此这篇关于PyTorch实现手写数字的识别入门小白教程的文章就介绍到这了,更多相关PyTorch手写数字识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch实现手写数字图片识别

    本文实例为大家分享了pytorch实现手写数字图片识别的具体代码,供大家参考,具体内容如下 数据集:MNIST数据集,代码中会自动下载,不用自己手动下载.数据集很小,不需要GPU设备,可以很好的体会到pytorch的魅力. 模型+训练+预测程序: import torch from torch import nn from torch.nn import functional as F from torch import optim import torchvision from matplot

  • PyTorch简单手写数字识别的实现过程

    目录 一.包导入及所需数据的下载 关于数据集引入的改动 二.进行数据处理变换操作 三.数据预览测试和数据装载 四.模型搭建和参数优化 关于模型搭建的改动 总代码: 测试 总结 具体流程: ① 导入相应的包,下载训练集和测试集对应需要的图像数据. ②进行图像数据的变换,使图像数据转化成pytorch可识别并计算的张量数据类型 ③数据预览测试和数据装载 ④模型搭建和参数优化 ⑤总代码 ⑥测试 一.包导入及所需数据的下载 torchvision包的主要功能是实现数据的处理.导入.预览等,所以如果需要对

  • pytorch 利用lstm做mnist手写数字识别分类的实例

    代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式. # -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch im

  • PyTorch实现手写数字识别的示例代码

    目录 加载手写数字的数据 数据加载器(分批加载) 建立模型 模型训练 测试集抽取数据,查看预测结果 计算模型精度 自己手写数字进行预测 加载手写数字的数据 组成训练集和测试集,这里已经下载好了,所以download为False import torchvision # 是否支持gpu运算 # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # print(device) # print(torch.cud

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • PyTorch实现手写数字的识别入门小白教程

    目录 手写数字识别(小白入门) 1.数据预处理 2.训练模型 3.测试模型,保存 4.调用模型 5.完整代码 手写数字识别(小白入门) 今早刚刚上了节实验课,关于逻辑回归,所以手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽哈哈. 实验结果: 1.数据预处理 其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题.代码如下: #数据

  • Pytorch实现的手写数字mnist识别功能完整示例

    本文实例讲述了Pytorch实现的手写数字mnist识别功能.分享给大家供大家参考,具体如下: import torch import torchvision as tv import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import argparse # 定义是否使用GPU device = torch.device("cuda" if torch

  • 超详细PyTorch实现手写数字识别器的示例代码

    前言 深度学习中有很多玩具数据,mnist就是其中一个,一个人能否入门深度学习往往就是以能否玩转mnist数据来判断的,在前面很多基础介绍后我们就可以来实现一个简单的手写数字识别的网络了 数据的处理 我们使用pytorch自带的包进行数据的预处理 import torch import torchvision import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt

  • python神经网络编程之手写数字识别

    写在之前 首先是写在之前的一些建议: 首先是关于这本书,我真的认为他是将神经网络里非常棒的一本书,但你也需要注意,如果你真的想自己动手去实现,那么你一定需要有一定的python基础,并且还需要有一些python数据科学处理能力 然后希望大家在看这边博客的时候对于神经网络已经有一些了解了,知道什么是输入层,什么是输出层,并且明白他们的一些理论,在这篇博客中我们仅仅是展开一下代码: 然后介绍一下本篇博客的环境等: 语言:Python3.8.5 环境:jupyter 库文件: numpy | matp

  • TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集

    基于MNIST数据集的逻辑回归模型做十分类任务 没有隐含层的Softmax Regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程.多层神经网络依靠隐含层,则可以组合出高阶特征,比如横线.竖线.圆圈等,之后可以将这些高阶特征或者说组件再组合成数字,就能实现精准的匹配和分类. import tensorflow as tf import numpy as np import input_data print('Download and Extract MNIST datas

  • PyTorch CNN实战之MNIST手写数字识别示例

    简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的. 卷积神经网络CNN的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量. 全连接层:通常在CNN的尾部进行重新拟合,减

随机推荐