Opencv图像处理之详解掩膜mask

1.在OpenCV中我们经常会遇到一个名字:Mask(掩膜)。很多函数都使用到它,那么这个Mask到底什么呢?

2.如果我们想要裁剪图像中任意形状的区域时,应该怎么办呢?
答案是,使用掩膜(masking)。
我们先看一下掩膜的基础。图像的位运算。

图像基本运算

图像的基本运算有很多种,比如两幅图像可以相加、相减、相乘、相除、位运算、平方根、对数、绝对值等;图像也可以放大、缩小、旋转,还可以截取其中的一部分作为ROI(感兴趣区域)进行操作,各个颜色通道还可以分别提取及对各个颜色通道进行各种运算操作。总之,对于图像可以进行的基本运算非常的多,只是挑了些常用的操作详解。

bitwise_and、bitwise_or、bitwise_xor、bitwise_not这四个按位操作函数。
void bitwise_and(InputArray src1, InputArray src2,OutputArray dst, InputArray mask=noArray()); //dst = src1 & src2
void bitwise_or(InputArray src1, InputArray src2,OutputArray dst, InputArray mask=noArray()); //dst = src1 | src2
void bitwise_xor(InputArray src1, InputArray src2,OutputArray dst, InputArray mask=noArray()); //dst = src1 ^ src2
void bitwise_not(InputArray src, OutputArray dst,InputArray mask=noArray()); //dst = ~src

上述的基本操作中都属于将基础数学运算应用于图像像素的处理中,下面将着重介绍

bitwise_and是对二进制数据进行“与”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“与”操作,1&1=1,1&0=0,0&1=0,0&0=0
bitwise_or是对二进制数据进行“或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“或”操作,1|1=1,1|0=0,0|1=0,0|0=0
bitwise_xor是对二进制数据进行“异或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“异或”操作,1^1=0,1^0=1,0^1=1,0^0=0
bitwise_not是对二进制数据进行“非”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“非”操作,~1=0,~0=1

为了便于大家进一步理解,下面给出测试代码:

# opencv 图像的基本运算

# 导入库
import numpy as np
import argparse
import cv2

# 构建参数解析器
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
args = vars(ap.parse_args())

# 加载图像
image = cv2.imread(args["image"])
cv2.imshow("image loaded", image)

# 创建矩形区域,填充白色255
rectangle = np.zeros(image.shape[0:2], dtype="uint8")
cv2.rectangle(rectangle, (25, 25), (275, 275), 255, -1) # 修改这里
cv2.imshow("Rectangle", rectangle)

# 创建圆形区域,填充白色255
circle = np.zeros(image.shape[0:2], dtype="uint8")
cv2.circle(circle, (150, 150), 150, 255, -1) # 修改
cv2.imshow("Circle", circle)

# 在此例(二值图像)中,以下的0表示黑色像素值0, 1表示白色像素值255
# 位与运算,与常识相同,有0则为0, 均无0则为1
bitwiseAnd = cv2.bitwise_and(rectangle, circle)
cv2.imshow("AND", bitwiseAnd)
cv2.waitKey(0)

# 非运算,非0为1, 非1为0
bitwiseNot = cv2.bitwise_not(circle)
cv2.imshow("NOT", bitwiseNot)
cv2.waitKey(0)

# 或运算,有1则为1, 全为0则为0
bitwiseOr = cv2.bitwise_or(rectangle, circle)
cv2.imshow("OR", bitwiseOr)
cv2.waitKey(0)

# 异或运算,不同为1, 相同为0
bitwiseXor = cv2.bitwise_xor(rectangle, circle)
cv2.imshow("XOR", bitwiseXor)
cv2.waitKey(0)

可以看到,原图是一张星空夜景图。

效果如下:

为了便于展示,后面我只截取部分区域效果:

掩膜(mask)

在有些图像处理的函数中有的参数里面会有mask参数,即此函数支持掩膜操作,首先何为掩膜以及有什么用,如下:
数字图像处理中的掩膜的概念是借鉴于PCB制版的过程,在半导体制造中,许多芯片工艺步骤采用光刻技术,用于这些步骤的图形“底片”称为掩膜(也称作“掩模”),其作用是:在硅片上选定的区域中对一个不透明的图形模板遮盖,继而下面的腐蚀或扩散将只影响选定的区域以外的区域。
图像掩膜与其类似,用选定的图像、图形或物体,对处理的图像(全部或局部)进行遮挡,来控制图像处理的区域或处理过程。

数字图像处理中,掩模为二维矩阵数组,有时也用多值图像,图像掩模主要用于:
①提取感兴趣区,用预先制作的感兴趣区掩模与待处理图像相乘,得到感兴趣区图像,感兴趣区内图像值保持不变,而区外图像值都为0。
②屏蔽作用,用掩模对图像上某些区域作屏蔽,使其不参加处理或不参加处理参数的计算,或仅对屏蔽区作处理或统计。
③结构特征提取,用相似性变量或图像匹配方法检测和提取图像中与掩模相似的结构特征。
④特殊形状图像的制作。

在所有图像基本运算的操作函数中,凡是带有掩膜(mask)的处理函数,其掩膜都参与运算(输入图像运算完之后再与掩膜图像或矩阵运算)。

掩膜实例

如开篇所提问题2,要对一幅图进行抠图(裁剪)操作,这就要用到Mask了,那么就以抠图为例,解释Mask在里面的作用。同样以上图为例,从原图中裁剪小树。

我们利用OR结果(其他结果也行),修改调整后,

代码如下:

# opencv 图像的基本运算

# 导入库
import numpy as np
import argparse
import cv2

# 构建参数解析器
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
args = vars(ap.parse_args())

# 加载图像
image = cv2.imread(args["image"])
cv2.imshow("image loaded", image)

# 创建矩形区域,填充白色255
rectangle = np.zeros(image.shape[0:2], dtype="uint8")
cv2.rectangle(rectangle, (360, 348), (660, 570), 255, -1) # 修改这里
cv2.imshow("Rectangle", rectangle)

# 创建圆形区域,填充白色255
circle = np.zeros(image.shape[0:2], dtype="uint8")
cv2.circle(circle, (520, 455), 140, 255, -1) # 修改
cv2.imshow("Circle", circle)

'''
# 在此例(二值图像)中,以下的0表示黑色像素值0, 1表示白色像素值255
# 位与运算,与常识相同,有0则为0, 均无0则为1
bitwiseAnd = cv2.bitwise_and(rectangle, circle)
cv2.imshow("AND", bitwiseAnd)
cv2.waitKey(0)
# 非运算,非0为1, 非1为0
bitwiseNot = cv2.bitwise_not(circle)
cv2.imshow("NOT", bitwiseNot)
cv2.waitKey(0)
# 异或运算,不同为1, 相同为0
bitwiseXor = cv2.bitwise_xor(rectangle, circle)
cv2.imshow("XOR", bitwiseXor)
cv2.waitKey(0)
'''
# 或运算,有1则为1, 全为0则为0
bitwiseOr = cv2.bitwise_or(rectangle, circle)
cv2.imshow("OR", bitwiseOr)
cv2.waitKey(0)
# 使用mask
mask = bitwiseOr
cv2.imshow("Mask", mask)

# Apply out mask -- notice how only the person in the image is cropped out
masked = cv2.bitwise_and(image, image, mask=mask)
cv2.imshow("Mask Applied to Image", masked)
cv2.waitKey(0)

结果展示:

简单说就是:

与或非异或运算与我们的常识类似。掩膜操作就是两幅图像(numpy数组)的位运算操作。

附录:C++ 版

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

int main()
{
  Mat image, mask;
  Rect r1(100, 100, 250, 300);
  Mat img1, img2, img3, img4;
  image = imread("lol17.jpg");
  mask = Mat::zeros(image.size(), CV_8UC1);
  mask(r1).setTo(255);
  img1 = image(r1);
  image.copyTo(img2, mask);

  image.copyTo(img3);
  img3.setTo(0, mask);

  imshow("Image sequence", image);
  imshow("img1", img1);
  imshow("img2", img2);
  imshow("img3", img3);
  imshow("mask", mask);

  waitKey();
  return 0;
}

原始图:

注意程序中的这两句关于Mask的操作。

mask = Mat::zeros(image.size(), CV_8UC1);
mask(r1).setTo(255); //r1是设置好的感兴趣区域

解释一下上面两句的操作。

第一步建立与原图一样大小的mask图像,并将所有像素初始化为0,因此全图成了一张全黑色图。第二步将mask图中的r1区域的所有像素值设置为255,也就是整个r1区域变成了白色。

这样就能得到Mask图像了。

注意这句,哪个图像拷贝到哪个图像?

image.copyTo(img2, mask);

当然是原始图image拷贝到目的图img2上。
其实拷贝的动作完整版本是这样的:

原图(image)与掩膜(mask)进行与运算后得到了结果图(img2)。

何为图与掩膜的与运算?

其实就是原图中的每个像素和掩膜中的每个对应像素进行与运算。比如1 & 1 = 1;1 & 0 = 0;

比如一个3 * 3的图像与3 * 3的掩膜进行运算,得到的结果图像就是:

说白了,mask就是位图啊,来选择哪个像素允许拷贝,哪个像素不允许拷贝。如果mask像素的值是非0的,我就拷贝它,否则不拷贝。

因为我们上面得到的mask中,感兴趣的区域是白色的,表明感兴趣区域的像素都是非0,而非感兴趣区域都是黑色,表明那些区域的像素都是0。一旦原图与mask图进行与运算后,得到的结果图只留下原始图感兴趣区域的图像了。也正如下图所示。

image.copyTo(img2, mask);

如果想要直接抠出目标区域,直接这样写就OK了:

img1 = image(r1);

参考文献:

1.https://www.cnblogs.com/skyfsm/p/6894685.html

到此这篇关于Opencv图像处理之详解掩膜mask的文章就介绍到这了,更多相关Opencv 掩膜内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • OpenCvSharp图像的修改和保存以及掩膜操作

    一 :图像的颜色空间转换 在OpenCvSharp中颜色转换函数为:Cv2.CvtColor() 参数: 参数 说明 src: 源图像,8位无符号,16位无符号或单精度浮点 dst: 输出图像,具有与src相同的大小和深度 code: 颜色空间转换代码:(ColorConversionCodes)枚举类型 代码: static void Main(string[] args) { Mat src = new Mat(@"C:\Users\whx\Desktop\opcvImage\s1.jpg

  • Opencv图像处理之详解掩膜mask

    1.在OpenCV中我们经常会遇到一个名字:Mask(掩膜).很多函数都使用到它,那么这个Mask到底什么呢? 2.如果我们想要裁剪图像中任意形状的区域时,应该怎么办呢? 答案是,使用掩膜(masking). 我们先看一下掩膜的基础.图像的位运算. 图像基本运算 图像的基本运算有很多种,比如两幅图像可以相加.相减.相乘.相除.位运算.平方根.对数.绝对值等:图像也可以放大.缩小.旋转,还可以截取其中的一部分作为ROI(感兴趣区域)进行操作,各个颜色通道还可以分别提取及对各个颜色通道进行各种运算操

  • OpenCV图像处理基本操作详解

    本文实例为大家分享了OpenCV图像处理基本操作的具体代码,供大家参考,具体内容如下 图像的读取 cv2.IMREAD_COLOR 彩色图像 cv2.IMREAD_GRAYSCALE 灰色图像 import cv2#opencv 的读取格式是BGR import matplotlib.pyplot as plt import numpy as np #图像的显示,也可以创建多个窗口 img=cv2.imread('tu.jpg') cv2.imshow('name',img) #等待时间毫秒级,

  • Python OpenCV直方图均衡化详解

    目录 前言 灰度直方图均衡化 颜色直方图均衡化 前言 图像处理技术是计算机视觉项目的核心,通常是计算机视觉项目中的关键工具,可以使用它们来完成各种计算机视觉任务.在本文中,将介绍如何使用 OpenCV 函数 cv2.equalizeHist() 执行直方图均衡,并将其应用于灰度和彩色图像,cv2.equalizeHist() 函数将亮度归一化并提高图像的对比度. 灰度直方图均衡化 使用 cv2.equalizeHist() 函数来均衡给定灰度图像的对比度: # 加载图像并转换为灰度图像 imag

  • Python opencv操作深入详解

    直接读取图片 def display_img(file="p.jpeg"): img = cv.imread(file) print (img.shape) cv.imshow('image',img) cv.waitKey(0) cv.destroyAllWindows() 读取灰度图片 def display_gray_img(file="p.jpeg"): img = cv.imread(file,cv.IMREAD_GRAYSCALE) print (img

  • Python线性点运算数字图像处理示例详解

    目录 点运算 定义 分类 线性点运算 分段线性点运算 非线性点运算 对数变换 幂次变换 点运算 定义 分类 线性点运算 例子: 分段线性点运算 非线性点运算 对数变换 幂次变换 1. 点运算是否会改变图像内像素点之间的空间位置关系? 点运算是一种像素的逐点运算,它与相邻的像素之间没有运算关系,点运算不会改变图像内像素点之间的空间位置关系. 2. 对图像灰度的拉伸,非线性拉伸与分段线性拉伸的区别? 非线性拉伸不是通过在不同灰度值区间选择不同的线性方程来实现对不同灰度值区间的扩展与压缩,而是在整个灰

  • Python OpenCV阈值处理详解

    目录 前言 阈值技术简介 简单的阈值技术 阈值类型 简单阈值技术的实际应用 前言 图像分割是许多计算机视觉应用中的关键处理步骤,通常用于将图像划分为不同的区域,这些区域常常对应于真实世界的对象.因此,图像分割是图像识别和内容分析的重要步骤.图像阈值是一种简单.有效的图像分割方法,其中像素根据其强度值进行分区.在本文中,将介绍 OpenCV 所提供的主要阈值技术,可以将这些技术用作计算机视觉应用程序中图像分割的关键部分. 阈值技术简介 阈值处理是一种简单.有效的将图像划分为前景和背景的方法.图像分

  • Python如何使用opencv进行手势识别详解

    目录 前言 原理 程序部分 附另一个手势识别实例 总结 前言 本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等. 原理 首先先进行手部的检测,找到之后会做Hand Landmarks. 将手掌的21个点找到,然后我们就可以通过手掌的21个点的坐标推测出来手势,或者在干什么. 程序部分 第一安装Opencv pip install opencv-python 第二安装mediapipe pip install mediapipe

  • Ubuntu 17.04系统下源码编译安装opencv的步骤详解

    前言 本文主要针对Ubuntu 17.04版本下,opencv进行源码编译安装.开发环境主要针对python 对 openCV库的调用.下面话不多说了,来一起看看详细的介绍: 一.安装 gcc cmake 编译环境 sudo apt-get install build-essential pkg-config cmake cmake-gui 本文提供两种源码编译方式,一种是cmake命令,另一种是通过图形界面的cmake-gui进行编译 该版本系统ubuntu已经自带python 2.7 和 p

  • Python基于Tensor FLow的图像处理操作详解

    本文实例讲述了Python基于Tensor FLow的图像处理操作.分享给大家供大家参考,具体如下: 在对图像进行深度学习时,有时可能图片的数量不足,或者希望网络进行更多的学习,这时可以对现有的图片数据进行处理使其变成一张新的图片,在此基础上进行学习,从而提高网络识别的准确率. 1.图像解码显示 利用matplot库可以方便简洁地在jupyter内对图片进行绘制与输出,首先通过tf.gfile打开图片文件,并利用函数tf.image.decode_jpeg将jpeg图片解码为三位矩阵,之后便可以

  • Python OpenCV图像处理之图像滤波特效详解

    目录 1分类 2邻域滤波 2.1线性滤波 2.2非线性滤波 3频域滤波 3.1低通滤波 3.2高通滤波 1 分类 图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算.一般用于图像平滑.图像锐化.特征提取(如纹理测量.边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子 频域滤波(Frequency Domain Filter),其本质是对像素频率的修改.一般用于降噪.重采样.图像压缩等. 按

随机推荐