Numpy中的shape函数的用法详解

shape函数的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度,相当于行数。它的输入参数可以是一个整数表示维度,也可以是一个矩阵。shape函数返回的是一个元组,表示数组(矩阵)的维度,例子如下:

1. 数组(矩阵)只有一个维度时,shape只有shape[0],返回的是该一维数组(矩阵)中元素的个数,通俗点说就是返回列数,因为一维数组只有一行,一维情况中array创建的可以看做list(或一维数组),创建时用()和[ ]都可以,多维就不可以这样子了,这里使用[ ],请看下例:

>>> a=np.array([1,2])
>>> a
array([1, 2])
>>> a.shape
(2L,)
>>> a.shape[0]
2L
>>> a.shape[1]
Traceback (most recent call last):
 File "<pyshell#63>", line 1, in <module>
  a.shape[1]
IndexError: tuple index out of range  #最后报错是因为一维数组只有一个维度,可以用a.shape或a.shape[0]来访问
>>> a=np.array((1,2))
>>> a
array([1, 2]) #这个使用的是两个()包裹,得到的数组和前面的一样

2.数组有两个维度(即行和列)时,和我们的逻辑思维一样,a.shape返回的元组表示该数组的行数与列数,请看下例:

>>> a=np.array([[1,2],[3,4]])  #注意二维数组要用()和[]一起包裹起来,键入print a 会得到一个用2个[]包裹的数组(矩阵)
>>> a
array([[1, 2],
    [3, 4]])
>>> a.shape
(2L, 2L)
>>> b=np.array([[1,2,3],[4,5,6]])
>>> b
array([[1, 2, 3],
    [4, 5, 6]])
>>> b.shape
(2L, 3L)

3.当数组是三维时,要用一个()和两个[]包裹起来,键入print a 会得到一个用3个[]包裹的数组(矩阵),请看下例:

>>> a=np.array([[[1,2],[3,4]]])
>>> a
array([[[1, 2],
    [3, 4]]])
>>> a.shape
(1L, 2L, 2L)

这里返回的元组表示3个维度各包含的元素的个数。
所谓元素,在一维时就是元素的个数,二维时表示行数和列数,三维时a.shape【0】表示创建的块数,a.shape【1】和a.shape【2】表示每一块(每一块都是二维的)的行数和列数,举个例子:

>>> a=np.ones([2,2,3])#创建两个2行3列的数组(矩阵)
>>> a
array([[[ 1., 1., 1.],
    [ 1., 1., 1.]],

    [[ 1., 1., 1.],
    [ 1., 1., 1.]]])

总结:使用np.array()创建数组时,

一维的可以直接np.array([1,2,3])或者np.array((1,2,3)),输出(print)时是:

>>> print a
[1 2 3]

外面有一个[]包裹;

二维的要使用np.array([[1,2,3],[1,2,3]]),用一个()和一个[]把要输入的list包裹起来,输出(print)时是

>>> print a
[[1 2 3]
 [1 2 3]]

外面有两个[]包裹;

三维的要使用np.array([[[1,2,3],[1,2,3]]]),用一个()和两个[]把要输入的list包裹起来,输出(print)时是

>>> print a
[[[1 2 3]
 [1 2 3]]]

外面有三个[]包裹;

对于更高维的情况以后再研究

到此这篇关于Numpy中的shape函数的用法详解的文章就介绍到这了,更多相关Numpy shape函数用法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • numpy库reshape用法详解

    numpy.reshape(重塑) 给数组一个新的形状而不改变其数据 numpy.reshape(a, newshape, order='C')参数: a:array_like 要重新形成的数组. newshape:int或tuple的整数 新的形状应该与原始形状兼容.如果是整数,则结果将是该长度的1-D数组.一个形状维度可以是-1.在这种情况下,从数组的长度和其余维度推断该值. order:{'C','F','A'}可选 使用此索引顺序读取a的元素,并使用此索引顺序将元素放置到重新形成的数组中

  • Numpy中ndim、shape、dtype、astype的用法详解

    本文介绍numpy数组中这四个方法的区别ndim.shape.dtype.astype. 1.ndim ndim返回的是数组的维度,返回的只有一个数,该数即表示数组的维度. 2.shape shape:表示各位维度大小的元组.返回的是一个元组. 对于一维数组:有疑问的是为什么不是(1,6),因为arr1.ndim维度为1,元组内只返回一个数. 对于二维数组:前面的是行,后面的是列,他的ndim为2,所以返回两个数. 对于三维数组:很难看出,下面打印arr3,看下它是什么结构. 先看最外面的中括号

  • Numpy中的shape函数的用法详解

    shape函数的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度,相当于行数.它的输入参数可以是一个整数表示维度,也可以是一个矩阵.shape函数返回的是一个元组,表示数组(矩阵)的维度,例子如下: 1. 数组(矩阵)只有一个维度时,shape只有shape[0],返回的是该一维数组(矩阵)中元素的个数,通俗点说就是返回列数,因为一维数组只有一行,一维情况中array创建的可以看做list(或一维数组),创建时用()和[ ]都可以,多维就不可以这样子了,这里使用[ ],请看下

  • python使用numpy中的size()函数实例用法详解

    在python中,提到如何计算多维数组和矩阵,那一定会想到numpy.numpy定义了矩阵和数组,为它们提供了相关的运算.size中文解释为大家.尺寸的意思,如果想要统计矩阵元素个数,使用size()函数就可以解决. 1.Numpy size()函数 主要是用来统计矩阵元素个数,或矩阵某一维上的元素个数的函数. 2.使用语法 numpy.size(a, axis=None) 3.使用参数 a:输入的矩阵 axis:int型的可选参数,指定返回哪一维的元素个数.当没有指定时,返回整个矩阵的元素个数

  • numpy中的converters和usecols用法详解

    目录 方法一:使用usecols 方法二:使用numpy 方法三:使用切片区间 总结: 用Python打开Excel数据,读取时需要将”学号“和“ID"转换成字符,以便后续操作 df = pd.read_excel(path, converters={'学号': str, 'ID': str}) 以下是我的经历来体会: 我在从Excel读入python的数据时,发现读出的是空值: import pandas as pd df=pd.read_excel("D:/Python/05Dat

  • SQL Server中日期时间函数的用法详解

    1.getdate():获取当前日期 返回当前SQLServer服务器所在计算机的日期和时间.返回值舍入到最近的秒小数部分,精度为.333秒数据库十七偏移量不包含在内. select getdate() --输出 2013-03-09 15:16:00.570 2.getutcdate():获取UTC时间值 select GETUTCDATE() -- 2013-06-18 08:02:53.253 3.year():获取年度信息 year函数以int数据类型的格式返回特定日期的年度信息.其中的

  • PyTorch中topk函数的用法详解

    听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序

  • Oracle中的INSTR,NVL和SUBSTR函数的用法详解

    Oracle中INSTR的用法: INSTR方法的格式为 INSTR(源字符串, 要查找的字符串, 从第几个字符开始, 要找到第几个匹配的序号) 返回找到的位置,如果找不到则返回0. 例如:INSTR('CORPORATE FLOOR','OR', 3, 2)中,源字符串为'CORPORATE FLOOR', 在字符串中查找'OR',从第三个字符位置开始查找"OR",取第三个字后第2个匹配项的位置. 默认查找顺序为从左到右.当起始位置为负数的时候,从右边开始查找. 所以SELECT I

  • ES6中Array.find()和findIndex()函数的用法详解

    ES6为Array增加了find(),findIndex函数. find()函数用来查找目标元素,找到就返回该元素,找不到返回undefined. findIndex()函数也是查找目标元素,找到就返回元素的位置,找不到就返回-1. 他们的都是一个查找回调函数. [1, 2, 3, 4].find((value, index, arr) => { }) 查找函数有三个参数. value:每一次迭代查找的数组元素. index:每一次迭代查找的数组元素索引. arr:被查找的数组. 例: 1.查找

  • 对pandas中apply函数的用法详解

    最近在使用apply函数,总结一下用法. apply函数可以对DataFrame对象进行操作,既可以作用于一行或者一列的元素,也可以作用于单个元素. 例:列元素 行元素 列 行 以上这篇对pandas中apply函数的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: 浅谈Pandas中map, applymap and apply的区别

  • python 函数中的内置函数及用法详解

    今天来介绍一下Python解释器包含的一系列的内置函数,下面表格按字母顺序列出了内置函数: 下面就一一介绍一下内置函数的用法: 1.abs() 返回一个数值的绝对值,可以是整数或浮点数等. print(abs(-18)) print(abs(0.15)) result: 18 0.15 2.all(iterable) 如果iterable的所有元素不为0.''.False或者iterable为空,all(iterable)返回True,否则返回False. print(all(['a','b',

  • Oracle中的translate函数和replace函数的用法详解

    translate函数语法: translate(expr, from_strimg, to_string) 简介: translate返回expr,其中from_string中的每个字符的所有出现都被to_string中的相应字符替换.expr中不在from_string中的字符不会被替换.如果expr是一个字符串,那么你必须把它放在单引号中. from_string的参数可以包含比to_string更多的字符.在这种情况下,from_string末尾的多余字符在to_string中没有对应的

随机推荐