C语言 队列的实现全解析

目录
  • 队列的实现
    • 基本概念
    • 创建结构体
    • 初始化结构体
    • 销毁队列结构体
    • 入队
    • 出队
    • 判断队列是否为空
    • 访问对头的值
    • 访问队尾的值
    • 返回队列的长度
    • Queue.h
    • Queue.c
    • Test.c

队列的实现

基本概念

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出

FIFO(First In First Out)

入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低需要挪动数据O(N)。而链表结构头删只需要O(1)。尾插定义一个尾指针,也只需要O(1)。

创建结构体

这是一个嵌套结构体。

实参q的地址传给了形参pq。pq就是一个指向结构体Queue的指针。Queue里面的head是指向队列对头的指针,tail是指向队尾的指针。

int main()
{
//创建结构体变量q
//需要传q的地址过去。
	Queue q;

	return 0;
}

定义一个尾指针tail方便入队的尾插。头指针head方便出队时的头删。

typedef int QDataType;
//节点结构体
typedef struct QueueNode
{
	QDataType data;
	struct QueueNode* next;
}QNode;
//头指针和尾指针的结构体
typedef struct Queue
{
	QNode* head;
	QNode* tail;
}Queue;

初始化结构体

才开始还没有创建队列的空间,所以只需要初始化第一个结构体就ok了。队列初始状态需要对头和队尾指向同一位置,且都是空。

void QueueInit(Queue* pq)
{
	assert(pq);
	pq->head = pq->tail = NULL;
}

销毁队列结构体

这次我把销毁结构体放在初始化结构体的后面,原因是内存泄漏很严重,但是经常会忘记销毁结构体。创建意味着就要销毁,二者对立,所以排在初始化的后面,理所应当。

void QueueDestory(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;
	}
	pq->head = pq->tail = NULL;
}

入队

入队的时候,会创建新的节点。最好最好把新开的newnode节点初始化。把他的next置为空,方便后期求队列长度函数,和出队函数的循环条件的书写。

void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	assert(newnode);
	//下面两个初始化很有必要
	newnode->data = x;
	newnode->next = NULL;

	if (pq->tail == NULL)
	{
		assert(pq->head == NULL);
		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;
		pq->tail = newnode;
	}
}

出队

因为Queue结构体不可能为空,所以需要断言

还需要断言pq->head和tail都不为空。

void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->head && pq->tail);

	if (pq->head->next == NULL)
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode* next = pq->head->next;
		free(pq->head);
		pq->head = next;
	}
}

判断队列是否为空

为空返回true,为假返回false

bool QueueEmpty(Queue* pq)
{
	assert(pq);

	return pq->head == NULL;
}

访问对头的值

QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(pq->head);

	return pq->head->data;
}

访问队尾的值

QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->tail);

	return pq->tail->data;
}

返回队列的长度

长度不可能为负数,所以返回类型为size_t

size_t QueueSize(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	size_t size = 0;
	while (cur)
	{
		size++;
		cur = cur->next;
	}

	return size;
}

Queue.h

#pragma once

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>

typedef int QDataType;

typedef struct QueueNode
{
	QDataType data;
	struct QueueNode* next;
}QNode;

typedef struct Queue
{
	QNode* head;
	QNode* tail;

	//size_t size;
}Queue;

void QueueInit(Queue* pq);
void QueueDestory(Queue* pq);
void QueuePush(Queue* pq, QDataType x);
void QueuePop(Queue* pq);
bool QueueEmpty(Queue* pq);
size_t QueueSize(Queue* pq);
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);

Queue.c

#include "Queue.h"

void QueueInit(Queue* pq)
{
	assert(pq);
	pq->head = pq->tail = NULL;
}

void QueueDestory(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;
	}

	pq->head = pq->tail = NULL;
}

void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	assert(newnode);

	newnode->data = x;
	newnode->next = NULL;

	if (pq->tail == NULL)
	{
		assert(pq->head == NULL);
		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;
		pq->tail = newnode;
	}
}

void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->head && pq->tail);

	if (pq->head->next == NULL)
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode* next = pq->head->next;
		free(pq->head);
		pq->head = next;
	}
}

bool QueueEmpty(Queue* pq)
{
	assert(pq);

	return pq->head == NULL;
}

size_t QueueSize(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	size_t size = 0;
	while (cur)
	{
		size++;
		cur = cur->next;
	}

	return size;
}

QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(pq->head);

	return pq->head->data;
}

QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->tail);

	return pq->tail->data;
}

Test.c

void TestQueue()
{
	Queue q;
	QueueInit(&q);

	QueuePush(&q, 1);
	QueuePush(&q, 2);
	printf("%d ", QueueFront(&q));
	QueuePop(&q);

	QueuePush(&q, 3);
	QueuePush(&q, 4);

	while (!QueueEmpty(&q))
	{
		printf("%d ", QueueFront(&q));
		QueuePop(&q);
	}
	printf("\n");
}

int main()
{

	TestQueue();

	return 0;
}

到此这篇关于C语言 队列的实现全解析的文章就介绍到这了,更多相关C语言 队列内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言数据结构系列队列篇

    目录 一.队列(Queue) 0x00队列的概念 0x01队列的结构 二.队列的定义 0x00链式队列 0x02 接口函数 三.队列的实现 0x00队列初始化(QueueInit) 0x01销毁队列(QueueDestroy) 0x02判断队列是否为空(HeapIsEmpty) 0x03入队(QueuePush) 0x04出队(QueuePop) 0x05 返回队头数据(QueueFront) 0x06 返回队尾数据(QueueBack) 0x07 求队列大小(QueueSize) 0x08完整

  • C语言简明讲解队列的实现方法

    目录 前言 队列的表示和实现 队列的概念及结构 代码实现 束语 前言 大家好啊,我又双叒叕来水博客了,道路是曲折的,前途是光明的,事物是呈螺旋式上升的,事物最终的发展结果还是我们多多少少能够决定的,好啦,吹水结束,这与这篇博客的主题并没有太多联系.关于栈和队列这一板块本来是想不写(就是想偷懒),但是想了想,觉得这样不太好,关于数据结构这一块可能会有缺失,所以最终还是决定写,必须补齐这一块,恰好最近有时间写博客,所以还是写了,这篇博客将介绍队列的知识点,理解链表那一块的操作后,栈和队列的相关操作还

  • C语言队列和应用详情

    目录 1.队列的原理 2.队列的作用 3.队列程序设计思路 4.入列 5.出列 6.掌握队列程序编写 7.队列的应用 1.队列的原理 队列原理其实就像一个管道,如果我们不断往管道里面塞乒乓球,每个乒乓球在管道里就会排列一条队形.先进去的乒乓球就会先出来,这个就是队列的先进先出的规则. 球从左边进去,进去的动作就是入列,然后进去的球在管道里排成一个队列,这个叫队列缓存,说白了就是数组,那么这里存了5个球就相当于是buff[5];这样的意思,最右边出来的1号球就是最早进去的球,出来的这个动作叫出列,

  • C语言数据结构之队列算法详解

    目录 一.前言 二.基本概念 三.顺序队列 四.链队列 五.循环队列 六.总结与提高 一.前言 队列在程序设计中经常出现,如:操作系统中的排队问题. 这篇文章主要介绍了队列的基本概念.性质,顺序.链.循环三种不同的方法实现队列,顺序和循环队列在算法中比较常用 二.基本概念    定义:队列是允许在一端插入,另一端删除的线性表 队头(front):允许删除的一端 队尾(rear):允许插入的一端 特点:先进先出 三.顺序队列 动态图: 算法讲解:  图解:入队,rear++,出队,front++

  • C语言用栈模拟实现队列问题详解

    目录 题目描述 题目链接 思路分析 代码实现 题目描述 请你仅使用两个栈实现先入先出队列.队列应当支持一般队列支持的所有操作(push.pop.peek.empty). 你只能使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的. 题目链接 用栈实现队列 思路分析 题目的意思是要用两个栈来模拟实现一个队列.仅可以用栈的基本功能实现队列的基本功能.所以需要创建两个栈.所以这两个栈st1,st2可用一个结构

  • C语言 队列的实现全解析

    目录 队列的实现 基本概念 创建结构体 初始化结构体 销毁队列结构体 入队 出队 判断队列是否为空 访问对头的值 访问队尾的值 返回队列的长度 Queue.h Queue.c Test.c “ 江天一色无纤尘,皎皎空中孤月轮. ” 队列的实现 基本概念 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头 队列也可以数组和链表的结构实现,

  • C语言 队列的实现全解析

    目录 队列的实现 基本概念 创建结构体 初始化结构体 销毁队列结构体 入队 出队 判断队列是否为空 访问对头的值 访问队尾的值 返回队列的长度 Queue.h Queue.c Test.c 队列的实现 基本概念 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头 队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数

  • C语言实现五子棋功能全解析

    目录 1.game.h 2.test.c 3.game.c 4.游戏功能详解 (1).棋盘初始化 (2).棋盘的打印 (3).玩家下棋 (4).电脑下棋 (5).判断游戏输赢 (6).判断棋盘是否满了 5.AI算法下棋 (1).判断自己是否会赢(CheckComputer) (2).对玩家进行拦截(CheckPlayer) (3).加入AI算法后game.c的改动 1.game.h game.h:自定义头文件,用于: 库函数头文件的包含 符号与结构的声明 函数的定义 //防止头文件被重复包含 #

  • C语言自定义类型全解析

    目录 前言 结构体类型 结构体的声明 结构体变量的定义与初始化 结构体的自引用 结构体的访问 结构体的传参 传结构体 传地址 结构体的内存对齐(强烈建议观看) 位段 位段的声明 位段的内存管理 位段的跨平台性  枚举类型 枚举类型的定义 枚举类型赋予初始值 枚举类型的优点 联合体类型 联合体的定义 联合体的特点  联合体内存大小的计算 前言 初学C语言 我们先接触的都是内置的类型 比如说int char short float double long等等 这一期就来聊一聊自定义类型的知识 结构体

  • webpack3之loader全解析

    首先亮出webpack官方网站,webpack能干什么?官网给出的答案就是,一句话,让一切变得简单! 各式各样的loader层出不穷,让我们在构建时不知所措,于此,总结下loader的全解析. 概念 loader,顾名思义,加载器,英文的解释如下: Loaders are transformations that are applied on the source code of a module. They allow you to pre-process files as you impor

  • shell脚本语言的使用(超全超详细)

    1.shell的概述 shell 是一种脚本语言 脚本:本质是一个文件,文件里面存放的是 特定格式的指令,系统可以使用脚本解析器 翻译或解析 指令 并执行(它不需要编译) shell 既是应用程序 又是一种脚本语言(应用程序 解析 脚本语言) shell命令解析器: 系统提供 shell命令解析器: sh ash bash 查看自己linux系统的默认解析:echo $SHELL shell脚本是一种脚本语言,我们只需使用任意文本编辑器,按照语法编写相应程序,增加可执行权限,即可在安装shell

  • java agent使用全解析

    今天打算写一下 Java agent,一开始我对它的概念也比较陌生,后来在别人口中听到 字节码插桩,bTrace,Arthas后面才逐渐了解到Java还提供了这么个工具. JVM启动前静态Instrument Java agent 是什么? Java agent是java命令的一个参数.参数 javaagent 可以用于指定一个 jar 包,并且对该 java 包有2个要求: 这个 jar 包的 MANIFEST.MF 文件必须指定 Premain-Class 项. Premain-Class

  • C# 单元测试全解析

    目录 1.前言 2.单元测试 2.1 单元测试的定义 2.2 单元测试的好处 2.3 单元测试的原则 3..NET 中的测试框架 3.1 MS Test 3.2 NUnit 3.3 XUnit 4.XUnit 的基本使用 5.其他 1.前言 "不会写单元测试的程序员不是合格的程序员,不写单元测试的程序员不是优秀的工程师." 那么问题来了,什么是单元测试,如何做单元测试. 2.单元测试 2.1 单元测试的定义 按照维基百科上的说法,单元测试(Unit Testing)又称为模块测试, 是

  • Java Mybatis框架由浅入深全解析下篇

    目录 前言 什么是Maven Maven环境配置 Maven 构建生命周期 Maven项目的创建 目录结构 pom.xml文件 什么是pom.xml文件 加入项目所需依赖 添加资源文件的指定 总结 前言 上一篇我们第一次测试了Mybatis框架,并且成功了. 本想直接推进学习框架配置,但是很多小伙伴对Maven不了解,今天就来浅谈一下Maven. 今天我们就来剖析pom.xml配置文件,这个pom.xml文件,是我们构建maven项目的配置文件,既然我们使用到了,就利用本篇文章学习一下吧.这里只

随机推荐