python 实现多维数组转向量

我就废话不多说了,如下所示:

>>>from compiler.ast import flatten

>>>X

matrix([[  1,  17,  13, 221, 289, 169],

[  1,  17,  14, 238, 289, 196],

[  1,  17,  15, 255, 289, 225],

[  1,  18,  13, 234, 324, 169],

[  1,  18,  14, 252, 324, 196],

[  1,  18,  15, 270, 324, 225],

[  1,  19,  13, 247, 361, 169],

[  1,  19,  14, 266, 361, 196],

[  1,  19,  15, 285, 361, 225]])

>>>x = X.tolist()

>>>x

[[  1,  17,  13, 221, 289, 169],

[  1,  17,  14, 238, 289, 196],

[  1,  17,  15, 255, 289, 225],

[  1,  18,  13, 234, 324, 169],

[  1,  18,  14, 252, 324, 196],

[  1,  18,  15, 270, 324, 225],

[  1,  19,  13, 247, 361, 169],

[  1,  19,  14, 266, 361, 196],

[  1,  19,  15, 285, 361, 225]]

>>>xx = flatten(x)                      (或者x.ravel()    )

>>>xx

[1,

17,

13,

221,

289,

169,

1,

17,

14,

238,

289,

196,

1,

17,

15,

255,

289,

225,

1,

18,

13,

234,

324,

169,

1,

18,

14,

252,

324,

196,

1,

18,

15,

270,

324,

225,

1,

19,

13,

247,

361,

169,

1,

19,

14,

266,

361,

196,

1,

19,

15,

285,

361,

225]

以上这篇python 实现多维数组转向量就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python中numpy的矩阵、多维数组的用法

    1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用

  • Numpy 将二维图像矩阵转换为一维向量的方法

    以下的例子,将32x32的二维矩阵,装换成1x1024的向量 def image2vector (filename): returnVect=zeros((1,1024)) f=open(filename) for i in range (32): lineStr =fr.readline() for j in range (32): returnVect[0,32*i*j]=int(lineStr[j]) return returnVect 以上这篇Numpy 将二维图像矩阵转换为一维向量的方

  • python的dataframe转换为多维矩阵的方法

    最近有一个需求要把dataframe转换为多维矩阵,然后可以使用values来实现,下面记录一下代码,方便以后使用. import pandas as pd import numpy as np df = pd.DataFrame(np.random.rand(3,3),columns=list('abc'),index=list('ABC')) print(df) print('============') print(df.values) 实现的效果: 以上这篇python的datafram

  • Numpy中对向量、矩阵的使用详解

    在下面的代码里面,我们利用numpy和scipy做了很多工作,每一行都有注释,讲解了对应的向量/矩阵操作. 归纳一下,下面的代码主要做了这些事: 创建一个向量 创建一个矩阵 创建一个稀疏矩阵 选择元素 展示一个矩阵的属性 对多个元素同时应用某种操作 找到最大值和最小值 计算平均值.方差和标准差 矩阵变形 转置向量或矩阵 展开一个矩阵 计算矩阵的秩 计算行列式 获取矩阵的对角线元素 计算矩阵的迹 计算特征值和特征向量 计算点积 矩阵的相加相减 矩阵的乘法 计算矩阵的逆 一起来看代码吧: # 加载n

  • python 实现多维数组转向量

    我就废话不多说了,如下所示: >>>from compiler.ast import flatten >>>X matrix([[  1,  17,  13, 221, 289, 169], [  1,  17,  14, 238, 289, 196], [  1,  17,  15, 255, 289, 225], [  1,  18,  13, 234, 324, 169], [  1,  18,  14, 252, 324, 196], [  1,  18,  1

  • Python创建二维数组实例(关于list的一个小坑)

    0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

  • Python实现二维数组按照某行或列排序的方法【numpy lexsort】

    本文实例讲述了Python实现二维数组按照某行或列排序的方法.分享给大家供大家参考,具体如下: lexsort支持对数组按指定行或列的顺序排序:是间接排序,lexsort不修改原数组,返回索引. (对应lexsort 一维数组的是argsort a.argsort()这么使用就可以:argsort也不修改原数组, 返回索引) 默认按最后一行元素有小到大排序, 返回最后一行元素排序后索引所在位置. 设数组a, 返回的索引ind,ind返回的是一维数组 对于一维数组, a[ind]就是排序后的数组.

  • Python输入二维数组方法

    前不久对于Python输入二维数组有些不解,今日成功尝试,记以备忘.这里以输入1-9,3*3矩阵为例 n=int(input()) line=[[0]*n]*n for i in range(n): line[i]=input().split(' ') print(line) 使用数据转换为int即可! 以上这篇Python输入二维数组方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: 一些Python中的二维数组的操作方法 python中字

  • Python实现二维数组输出为图片

    对于二维数组,img_mask [[ 0 0 0 ..., 7 7 7] [ 0 0 0 ..., 7 7 7] [ 0 0 0 ..., 7 7 7] ..., [266 266 266 ..., 253 253 253] [266 266 266 ..., 253 253 253] [266 266 266 ..., 253 253 253]] 显示为图片的代码为: import matplotlib.pyplot as pyplot pyplot.imshow(im_mask) 以上这篇P

  • python 去除二维数组/二维列表中的重复行方法

    之前提到去除一维数组中的重复元素用unique()函数,如果要去除二维数组中的重复行该怎么操作呢? import numpy as np arr = np.array([[1, 2],[3, 4],[5, 6],[7, 8],[3, 4],[1, 2]]) print(np.array(list(set([tuple(t) for t in arr])))) 输出: [[1 2] [3 4] [5 6] [7 8]] 如果是二维列表,列表中每个元素还是列表 list2=list(set([tup

  • python统计多维数组的行数和列数实例

    python菜鸟,每天都要进步一点点. 二维元组的例子: A = ((1, 1, 1), (1, 1, 1),(1, 1, 1),(0, 0, 0)) print len(A) # 4, print len(A[0]) # 3 同样的如果是多维,每一维长度应该是 len(A[i]) 以上这篇python统计多维数组的行数和列数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python实现二维数组的对角线遍历

    本文实例为大家分享了python实现二维数组的对角线遍历,供大家参考,具体内容如下 第一种情况:从左上角出发,右下角结束 要完成的事情,就像下图: 话不多说,直接上Python实现代码与结果展示: # 输出遍历的索引与其对应的值 A = [[1,2,3], [4,5,6], [7,8,9]] n = len(A) for i in range(n+n-1): for j in range(i+1): k = i-j if k<n and k>=0 and j<n: print("

  • Python操作多维数组输出和矩阵运算示例

    本文实例讲述了Python操作多维数组输出和矩阵运算.分享给大家供大家参考,具体如下: 在许多编程语言中(Java,COBOL,BASIC),多维数组或者矩阵是(限定各维度的大小)预先定义好的.而在Python中,其实现更简单一些. 如果需要处理更加复杂的情形,可能需要使用Python的数学模块包NumPy,链接地址:http://numpy.sourceforge.net/ 首先来看一个简单的二维表格.投掷两枚骰子时,有36种可能的结果.我们可以将其制成一个二维表格,行和列分别代表一枚骰子的得

  • python 实现多维数组(array)排序

    关于多维数组如何复合排序 如数组: >>> import numpy as np >>> data = np.array([[2,2,5],[2,1,3],[1,2,3],[3,1,4]]) >>>> data array([[2, 2, 5], [2, 1, 3], [1, 2, 3], [3, 1, 4]]) 将数组先按照第一列升序,第二列升序,第三列升序的方式排序: >>> idex=np.lexsort([data[:,

随机推荐